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ABSTRACT

Knowledge distillation is the procedure of transferring "knowledge" from a large model (the teacher)
to a more compact one (the student), often being used in the context of model compression. When
both models have the same architecture, this procedure is called self-distillation. Several works
have anecdotally shown that a self-distilled student can outperform the teacher on held-out data. In
this work, we systematically study self-distillation in a number of settings. We first show that even
with a highly accurate teacher, self-distillation allows a student to surpass the teacher in all cases.
Secondly, we revisit existing theoretical explanations of (self) distillation and identify contradicting
examples, revealing possible drawbacks of these explanations. Finally, we provide an alternative
explanation for the dynamics of self-distillation through the lens of loss landscape geometry. We
conduct extensive experiments to show that self-distillation leads to flatter minima, thereby resulting
in better generalization.

Keywords self-distillation · knowledge distillation · flat and sharp minima

1 Introduction

In recent years, deep neural networks have found success in various tasks such as image classification [38, 54, 20],
object detection [54], speech recognition [3], and language understanding [15]. But their success comes at the cost
of incurring billions of model parameters. As a consequence, it can be very challenging to deploy such cumbersome
models on devices with constrained resources, and a plethora of model compression and acceleration methods have
been developed to address this challenge.

One such method is knowledge distillation (KD), introduced by Bucilua et al. [7] and Hinton et al. [31] as a method
of transferring knowledge from a large model (teacher) to another lightweight model (student) that is much easier to
deploy without significant loss in performance. The intuition is that during training, the model needs to sift through a
large set of possible from massive, highly redundant datasets, so a vast amount of representation capacity is needed.
But during inference, the learned features might well be represented using smaller models. While Bucilua et al. [7]
achieve this through matching predicted logits over a training dataset, Hinton et al. [31] introduce a tunable temperature
the softmax outputs to better represent smaller probabilities in the model output.

In the original KD setting, the student model has fewer parameters than the teacher, thereby resulting in improved
efficiency. However, even if model compression is not the goal, it is now folklore that distillation leads to improved
model performance. A series of recent works have explored the setting when the teacher and student architectures are
identical. Somewhat curiously, here too, KD leads to uniform boosts in student test accuracy [24, 59, 1, 46, 5, 64, 55].
This special case is often referred as self-distillation, and will be the central focus of our work.

Despite its promise, the reasons behind the success of self-distillation are not well-understood. At the face of it, both
teacher and student have access to the same training dataset; the model capacities of the teacher and the student are
identical; the training algorithm is identical (modulo possible choices of hyper-parameters). Where, then, are the
benefits of self-distillation coming from?

Our contributions. In this paper, we systematically investigate the behavior of self-distillation, and uncover possible
explanations for its success.
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First, we perform a series of careful self-distillation experiments on standard image classification benchmarks. We
confirm that even when the teacher has very high test accuracy, self-distillation can still enable the student to outperform
its teacher.

Second, we revisit an existing theory of knowledge distillation called the multi-view hypothesis [2]. At a high-level, the
hypothesis states that the teacher (for various reasons) typically only learns a strict subset of “views” (or facets) of the
input data, and self-distillation enables the student to learn the rest of these views. We design a series of experiments
that contradict this hypothesis, potentially unveiling its limitations as an explanation of KD.

Third, we investigate self-distillation through the lens of loss landscape geometry. We conduct a series of experiments
to show that self-distillation encourages the student to find flatter minima (relative to the teacher). These findings are
consistent with recent theoretical results on KD for shallow (kernel) models [46], and can be viewed as an alternative
explanation for why self-distillation works: adding a "distillation" term flattens the loss landscape around minima,
thereby improving generalization.

2 Related Work

Knowledge distillation. Since its original introduction in [7, 31], many subsequent papers have introduced several
refinements to KD. FitNets [53] focus on the intermediate representations by using regression to match the teacher
and student feature activations. Similarly, attention transfer [62] deals with the feature maps instead of the output
logits. Yonglong et al. [56] use a contrastive-based objective for transferring knowledge between networks. RKD [48]
utilizes the distance-wise and angle-wise distillation losses that penalize structural differences in relations. Mishra and
Marr [45] and Polino et al. [51] combines KD with network quantization to reduce bit precision of activations and
weights. Xu et al. [58] use a conditional adversarial network to learn a loss function for knowledge distillation. Yin et
al. [61] generate class-conditional images for data-free KD. Additionally, KD has been explored beyond supervised
learning. Lopez et al.[43] extend KD to unsupervised, semi-supervised, and multi-task learning settings by combining
frameworks from [31, 57]. Applications of KD have even made their way to recommender systems [36, 35], image
retrieval [10], federated learning [41], and graph similarity computation [52].

Self-distillation. Several attempts to explain the behavior of self-distillation have already been made. Furlanello et
al.[24] shows that “dark knowledge” is a form of importance weighting. Dong et al.[19] demonstrates that early-
stopping is essential for self-distillation to harness dark-knowledge. Zhang and Sabuncu [64] provides empirical
evidence that diversity in teacher predictions is correlated with the performance of the student in self-distillation. Based
on this, they offer a new interpretation for teacher-student training as amortized a posteriori estimation of the softmax
probability outputs, such that teacher predictions allow instance-specific regularization. They also propose a novel
instance-specific label smoothing techniques that directly increase predictive diversity.

Mohabi et al. [46] provide a theoretical analysis of self-distillation in the classical regression setting where the student
model is only trained on the soft labels provided by the teacher. In particular, they fit a nonlinear function to training
data with models belonging to a Hilbert space under L2 regularization. In this setting, multi-round self-distillation is
progressively limiting the number of basic functions to represent the solution. Additionally, [5] build upon the previous
analysis by also including the weighted-ground truth targets in the self-distillation procedure. They demonstrate that for
fixed distillation weights, the ground-truth targets lessen the sparsification and regularization effect of the self-distilled
solution. However, both [46] and [5] use the Mean Square Error (MSE) for the objective function, and therefore their
results do not directly apply to image classification models trained using the cross-entropy loss.

Allen-Zhu and Li [2] study self-distillation under a more practical setting where the student is trained on a combination
of soft-labels from the teacher and ground-truth targets. Specifically, the student objective function consists of a
cross-entropy loss in the usual supervised task, and a Kullback-Leibler divergence term to encourage the student match
the soft probabilities of the teacher model. They also introduce the "multi-view" hypothesis to explain how ensemble,
knowledge distillation, and self-distillation work. We will discuss the hypothesis in more detail in Section 5.1. Finally,
[55] systematically study the nature of (standard) knowledge distillation. They particularly study the problem through
fidelity: how well the student can match its teacher’s predictions, and generalization: the performance of a student
on unseen held-out data. The work of [63] is perhaps closest to ours in spirit. However, their technical definition of
self-distillation is different from what we consider, and therefore their observations do not directly port over to our
setting.
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Figure 1: Illustration of 2-round self-distillation. f (0) is the model trained from scratch using only ground-truth
labels. f (1) is trained through self-distillation using both ground-truth labels y and soft-labels y(0) from its teacher. The
same procedure is used to train f (2).

3 Preliminaries

Consider the supervised setting where X and Y denote the input and output (label) space respectively with |Y| = k. We
wish to learn a classifier f : X × θ → Rk with parameters θ that maps input feature x ∈ X to a categorical predictive
distribution over Y . Specifically, let P(y = i|x, θ) = σi(f(x, θ)) where σ(·) is the standard softmax function. We
define f(x, θ) as the logits of the classifier f . We let ft and fs be respectively functions of the teacher and student,
parameterized by θt and θs. These functions are typically implemented as deep neural networks. When we refer to
an ensemble of models, the logits (z1, ...,zm) where zi = fi(x, θi) are averaged to form the final logit vector, i.e.
zens =

1
m

∑m
i=1 zi.

In conventional knowledge distillation, given a pre-trained teacher model, a student model is trained to emulate the
teacher by minimizing the following objective:

LKD = αLCE(zs,y) + (1− α)LKL(zs, zt)

In the above equation, LCE(zs,y) := −
∑k

j=1 yj logσj(zs) is the usual cross-entropy loss between the student logits
zs and labels y, and

LKL(zs, zt) := τ2
k∑

j=1

σj(zt/τ)logσj(zt/τ)− σj(zt/τ)logσj(zs/τ)

is the Kullback-Leibler divergence between the scaled student and teacher logits. Here, τ > 0 is a temperature
hyperparameter, zt = f(x, θt), and zs = f(x, θs), while α ∈ [0, 1) is a constant hyperparameter that controls the
relative importance of the cross-entropy and Kullback-Leibler terms.

For self-distillation, the teacher and student will have the same model architecture. At round 0, the teacher model is
trained from scratch. Subsequently, for every round of distillation, the teacher is the student model obtained in the
previous step. We denote the model at the nth step of distillation as f (n), parameterized with θn. See Figure 1 for an
illustration.

4 Does The Student Always Surpass The Teacher?

First, we revisit (folklore) intuition in self-distillation, and check whether it is indeed correct. Self distillation is
often used with the underlying assumption that the student must improve upon a teacher, and existing results on
self-distillation have mostly supported this assumption. However, there arises a natural question: can self-distillation
always improve upon a teacher trained on the same dataset from scratch (i.e., using only cross entropy)?

Specifically, is self-distillation a useful strategy that can improve upon even the highest-performing of teachers? We
demonstrate that this is in fact true for single-round self-distillation through a series of experiments.

First, we start by noticing that teacher model accuracies that were previously reported in related literature on self-
distillation [46, 5, 2] almost always lag behind the state-of-the-art. (See table 1.). Therefore, it could be that any gains
by a distilled student over the teacher might have been illusory, and could have been nullified if the teacher itself was
trained better.

3
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Table 1: Comparison of reported teacher and student performances from published self-distillation literature.
A proper choice of training hyperparameters makes a baseline teacher outperform the self-distilled students reported in
[46, 5, 2]. Moreover, our choice of architecture (e.g., ResNet18) has fewer parameters than the models of [46, 5, 2].
However, self-distillation does improve the generalization when teacher is trained with advanced data augmentation
techniques such as Cutout [16] and AutoAugment [12].

Literature Architecture Dataset Teacher Student
Mohabi et al.[46] ResNet50 CIFAR-10 80.5% 81.3%
Mohabi et al.[46] VGG16 CIFAR-100 55.0% 56.5%
Borup & Andersen [5] ResNet34 CIFAR-10 84% 85%
Allen-Zhu & Li [2] ResNet34 CIFAR-10 93.65% 94.21%
Allen-Zhu & Li [2] ResNet34 CIFAR-100 71.66% 73.14%
Ours ResNet18 CIFAR-10 95.56% 95.84%
Ours + Data Aug. ([16, 12]) ResNet18 CIFAR-10 97.16% 97.40%
Ours VGG16 CIFAR-10 94.39% 94.50%
Ours + Data Aug. ([16, 12]) VGG16 CIFAR-10 96.19% 96.49%
Ours ResNet18 CIFAR-100 76.30% 77.73%
Ours + Data Aug. ([16, 12]) ResNet18 CIFAR-100 78.22% 80.71%

We know that model performance can, in practice, be further improved by (1) choosing the right set of hyperparameters
and (2) adopting advanced data augmentation methodologies ([16], [12]). We leverage these to train better-performing
teachers than ones that have been previously reported. We then train student models using self-distillation for a variety
of architectures and datasets, and measure benefits (if any) of self-distillation in terms of test accuracy.

Experiment setup. For our experiments, we consider two architectures: ResNet18 and VGG16 trained on CIFAR-10
and CIFAR-100. We use several performance-improving heuristics, including a cosine learning rate schedule and early
stopping. We also leverage modern data augmentation techniques, specifically AutoAugment [12] and Cutout [16],
to train more accurate models. We choose the best models in every setting, and then use self-distillation to train the
corresponding student models. We report all performance numbers in Table 1.

Table 1 compares the reported teachers’ test accuracy on the CIFAR-10/100 dataset to the student models we trained via
self-distillation (details of training hyperparameters are provided in the Appendix). We infer the following observations
based on Table 1.
(1) Teacher models used in [46, 5, 2] are relatively weak baselines; our ResNet18 teacher achieves 95.56% test accuracy,
which is even higher than larger architectures (e.g. ResNet34, ResNet50) used in previously published work.
(2) Self-distillation does indeed further boost generalization (e.g., 97.16%→ 97.40%) even when the teacher is a strong
classifier trained with heavy-duty data augmentation.

We therefore conclude that the aforementioned results are directionally correct: self-distillation really does improve
upon teacher accuracy, even when the teachers themselves are strong classifiers. However, this still does not reveal any
reasons behind this ubiquitous performance boost. Our next two sections address this matter.

5 Can Students Become Progressively Better?

5.1 The multi-view hypothesis

Next, we revisit (seminal) prior work. In a thought-provoking paper, Allen-Zhu & Li [2] have proposed the “multi-view”
hypothesis as a possible explanation as to why KD works so well. The multi-view hypothesis suggests that natural
datasets (particularly for image classification) exhibit a special structure. Samples in such datasets consist of multiple
“views” or concepts which when grouped together imply a class. For example, a car image can be correctly classified
when the model look at the headlights, the wheels, or the windows. Given a typical placement of a car in images, it is
suffice to accurately predict a car using one of the above-mentioned features. The authors claim that several vision
datasets (including CIFAR-10 and CIFAR-100) exhibit multi-view structure, and standard neural network models (such
as ResNet-X) leverage this during training.

The authors support this hypothesis by analyzing ensembles of neural networks. They investigate how the improvement
can be distilled into a single model using knowledge distillation. They then show that self-distillation is equivalent to
implicitly combining ensembles and knowledge distillation to attain better test accuracy. They finally conclude that
the performance boost can therefore be explained by the multi-view hypothesis. In particular, they argue that special

4
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Table 2: Self-distillation results on CIFAR-10. Data augmentation means leveraging Cutout and AutoAugment
techniques. We report mean and standard deviations of test accuracy from three independent runs. ↑ (resp. ↓) stands for
the increase (resp. decrease) in test accuracy relative to its teacher.

Architecture Dataset Data Aug. α Teacher Round 1 Round 2 Round 3 SAM
ResNet18 CIFAR-10 No 0.2 95.57± 0.15 95.80± 0.05(↑) 95.58± 0.13(↓) 95.62± 0.09(↑) 96.25± 0.06
ResNet18 CIFAR-10 No 0.5 95.57± 0.15 95.84± 0.10(↑) 95.60± 0.17(↓) 95.59± 0.01(↓) 96.25± 0.06
ResNet18 CIFAR-10 No 0.8 95.57± 0.15 95.74± 0.09(↑) 95.55± 0.10(↓) 95.62± 0.09(↑) 96.25± 0.06
ResNet18 CIFAR-10 Yes 0.2 97.15± 0.07 97.24± 0.05(↑) 97.39± 0.01(↑) 97.44± 0.04(↑) 97.42± 0.04
ResNet18 CIFAR-10 Yes 0.5 97.15± 0.07 97.40± 0.04(↑) 97.36± 0.05(↓) 97.38± 0.04(↑) 97.42± 0.04
ResNet18 CIFAR-10 Yes 0.8 97.15± 0.07 97.28± 0.07(↑) 97.38± 0.11(↑) 97.43± 0.05(↑) 97.42± 0.04
VGG16 CIFAR-10 No 0.2 94.39± 0.11 94.45± 0.12(↑) 94.25± 0.09(↓) 94.25± 0.04(−) 95.02± 0.17
VGG16 CIFAR-10 No 0.5 94.39± 0.11 94.50± 0.12(↑) 94.26± 0.14(↓) 94.16± 0.17(↓) 95.02± 0.17
VGG16 CIFAR-10 No 0.8 94.39± 0.11 94.38± 0.07(↓) 94.35± 0.06(↓) 94.30± 0.11(↓) 95.02± 0.17
VGG16 CIFAR-10 Yes 0.2 96.19± 0.05 96.36± 0.15(↑) 96.33± 0.05(↓) 96.29± 0.05(↓) 96.61± 0.12
VGG16 CIFAR-10 Yes 0.5 96.19± 0.05 96.49± 0.08(↑) 96.36± 0.08(↓) 96.39± 0.04(↑) 96.61± 0.12
VGG16 CIFAR-10 Yes 0.8 96.19± 0.05 96.36± 0.03(↑) 96.42± 0.06(↑) 96.37± 0.05(↓) 96.61± 0.12

structure in data is arguably necessary for ensemble to work. Formally, a neural network trained using the cross-entropy
loss from random initialization will:

1. Learn one of the features v ∈ {v1, v2} for the first label, and one of the features v′ ∈ {v3, v4} for the second label.
As a result, 90% of the training examples consisting of features v and v′ are classified correctly. Once classified
correctly, these samples contribute negligibly to the gradient.

2. Afterwards, the network will memorize the remaining 10% of the training data without learning any additional
features, as there is not enough data remaining after the previous phase. This explains why models can achieve
100% training accuracy but 90% test accuracy.

To elaborate, under this hypothesis, an ensemble will learn more features than a single model. Further, during knowledge
distillation, the student will be forced to learn additional features from the teacher. In both cases, the resulting model
will have superior test accuracy compared to an individual model trained from scratch. In the case of self-distillation,
the authors suggest that the procedure implicitly combines ensemble and knowledge distillation. Particularly, if the
teacher learns VA features, the student is encouraged to also learn VA. Subsequently, it purportedly learns additional
features, VB on its own. Thus the self-distilled model performs better than the teacher by ensembling its independent
features with those of the teacher, resulting in a larger learned set of features VA ∪ VB
As empirical evidence, the authors show that one-round self-distillation allows students trained on CIFAR-10/100
surpass the teacher in test accuracy. They also show that when data that does not exhibit the multi-view structure
(Gaussian like with target label generated by any fully-connected / residual / convolutional network), the ensemble
does not improve upon any individual model in terms of test accuracy. Lastly, they demonstrate that if we first distill
knowledge from an ensemble ens1 to multiple student models, and create a second ensemble ens2 from those student
models, then the test accuracy of ens2 does not exceed ens1, and is in fact lower in many cases.

Multi-round self-distillation A natural extension to this line of thought would be to sequentially use self distillation
to encourage student models to learn increasingly larger set of features – VA ∪ VB ∪ VD, where VD are the features
from model D being implicitly introduced in the ensemble. We analyse if the multi-view hypothesis still holds in this
case.

Experiment setup. For the first experiment, we train multiple individual models from scratch. An ensemble created
from these models are then used as the teacher to perform knowledge distillation, where the student is a single model
with the same architecture as the initial individual models. We increase the number of models in the ensemble from
2 to 9 and measure both the ensemble (teacher) and the student. In the next experiment, we perform self-distillation
for 3 rounds. All the models have the same architecture. Each model model is trained for 600 epochs using Cutout
and AutoAugment augmentations. We use 3 different α values of 0.2, 0.5, and 0.8. At each round, we save the model
with the highest test accuracy and use it as the teacher for the next self-distillation round. An illustration of 2-round
self-distillation can be seen in Figure 1. The architectures we consider for both of our experiments are ResNet18 and
VGG16.

Results We report the our findings for the first experiment in figure 3. We observe that as we increase the number of
models in an ensemble and use it as the teacher, then the student will also display better test accuracy. In other words,
the more features we force the student to learn, the higher test accuracy it has. If the multi-view hypothesis correctly
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Figure 2: BAN vs Ensemble. The mean and stan-
dard deviation of accuracy is reported over 3 runs.
The ensemble out-performs BAN at all stages, imply-
ing that training an ensemble is more effective than
multiple rounds of self-distillation.

Figure 3: Ensemble as teachers. As more mod-
els are used as teachers, the student performance
improves. However, the multi-view hypothesis is
contradicted as the ensemble always outperforms the
student.
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Figure 4: Evolution of flatness measures in multi-step distillation on ResNet18 for CIFAR-10. ‘T’ and ‘S’ stand for
teacher and student models, respectively. Smaller trace (red) and λmax (blue) values imply flatter minima. We observe
the student with first round distillation enjoys getting a benefit finding flatter minima than the teacher. Surprisingly,
self-distillation implicitly finds a flatter minima than SAM, which explicitly looks for the wider minima in its objective
functions.

explains self-distillation, we expect that the student learns features from all the previous teachers in addition to its own
independent features, thus achieving incrementally better test accuracy. However, our results for the second experiment
show otherwise. From figure 2. While a single round of self-distillation consistently makes the student outperform the
teacher, performing it for multiple rounds does not result in a stepwise better student. For example, when the model
architecture is ResNet18, performing self-distillation using α = 0.2 without self-distillation makes the test accuracy at
every step evolve as follows: 95.17%→ 95.8%→ 95.58%→ 96.25%. We can see that the accuracy fluctuates instead
of progressively increasing, which holds fold for the majority of rows in table 2. This suggests that the multi-view
hypothesis might not be sufficient to explain the success behind self-distillation.
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Figure 5: Evolution of flatness measures in multi-step distillation on VGG16 for CIFAR-10. ‘T’ and ‘S’ stand for
teacher and student models, respectively. We observe the similar trends to Figure 4, which self-distillation implicitly
finding wider minima than both teacher and SAM.

5.2 Do Born-Again Neural Networks Work?

Our proposal to perform multiple rounds of self-distillation is in fact not new, and dates back (at least) to Born-
again Neural Networks (BAN) [24]. At a high level, this involves a re-training procedure that (essentially) performs
multi-round self-distillation and then constructs an ensemble of the final models of every round to make predictions.
Specifically, using the notation from Figure 1, the output of the corresponding Born-Again Neural Network is given by

fBAN = (f (0)(x) + f (1)(x) + f (2)(x))/3.

However, we discover that Born-Again Networks (BANs) actually perform worse than an ensemble over a collection of
models trained independently from scratch.

Experimental setup. We use ResNet18 as the student models in BAN. We train the student models for 600 epochs,
using SGD with momentum 0.9, weight decay 3× 10−4, batch size 96, gradient clipping 5.0, and an initial learning
rate of 0.025. The learning rate schedule is Cosine Annealing [44]. For data augmentation, we also use AutoAugment
[13] and Cutout [17]. Additionally, we also train multiple models from scratch using the similar procedure to use for
the ensemble. One can think of normal ensembling as a special case of BAN when α = 1.0. We report our BAN
performance on CIFAR-10.

Results. Figure 2 shows that BAN underperforms straightforward ensembling for all three choices of α. Notice that
as α increases, or as the student less depends on the teacher, BAN performance comes closer to that of an ensemble
classifier. This suggests that it is more effective to just simply train an ensemble from scratch than performing several
rounds of self-distillation as suggested by BAN.

6 Self-Distillation Finds Flat Minima

We have empirically demonstrated that contra the multi-view hypothesis, multiple rounds of self-distillation fail to yield
progressively better students. In this section, we propose an alternative explanation for the success of self-distillation
that is more consistent with this finding.

We specifically focus on the geometry of the (local) loss landscape around the learned model parameters. The connection
between landscape flatness and generalization has been extensively studied from both the empirical and theoretical
perspectives [37, 21, 34, 33], and flatter minima have been reported to give better generalization in various tasks
[23, 50, 8]. We therefore hypothesize that self-distillation makes the student model attain flatter minima than the
teacher.
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Figure 6: Tracking trace and top eigenvalue in distillation steps on ResNet18 (bottom row) for CIFAR-100. All models
use augmentation.
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Figure 7: Eigenspectrum of Hessian on ResNet18 from CIFAR-10 using [60]. The narrower eigenspectrum implies
the flatter the loss surface. The explicit objective function from SAM (left) narrows down the eigenspectrum compared
to the teacher model trained with regular cross-entropy loss. We further observe that the student model distillate from
equivalent architecture (teacher) achieves an even flatter loss surface than SAM (left). The right plot compares the
eigenspectrum of different students with various rounds.

To be clear, Dinh et al. [18] have shown that flatness on its own does not automatically imply better generalization in
very deep models. Still, measuring and comparing flatness measures between the teacher and the student may provide
insights on test accuracy. Similar to [9], we use the eigen-spectrum of the Hessian for the entire neural network to
measure flatness of the loss landscape. Note that for ideal flat minima, all eigen-values of the Hessian should be positive
and close to zero. This would necessarily result in also having a lower trace and lower top eigen-value λmax. We
therefore also report the trace and the largest eigen-value as surrogate measures of flatness.

We use PyHessian [60] to estimate the trace, the top eigenvalue λmax, and the eigen-spectral density of the models
from 2. PyHessian leverages standard randomized linear algebra algorithms and automatic differentiation to estimate
second-order properties of large neural network models. We report the results in Figure 4 and 5. We also trained a
VGG16 and a ResNet18 with the recently proposed Sharpness-Aware Minimization (SAM) [23], an algorithm that
explicitly encourages flat minima by modifying the training objective, as a suitable baseline for comparison.

We notice that the teacher model trained with augmentation has a higher trace and λmax than without augmentation.
Further, a single round of self-distillation will result in a student with lower trace and λmax than the teacher. Interestingly,
performing multi-round self-distillation does not make successive students attain increasingly flatter minima, as the
trace and λmax of models from subsequent rounds only fluctuate around those of the student from the first round.
Figure 7 display the eigen-spectrum of the Hessian for ResNet18 on CIFAR-10. We can see that the overall distribution
of eigenvalues of the student models is more concentrated around 0 compared to the teacher with or without SAM,
therefore implying flatter minima.

Additionally, following [40], we trained a ResNet20 without skip connections for 2 self-distillation steps and visualize
the loss surfaces similar to the authors. We demonstrate this in Figure 8. The borderlines of the teacher shows that it is
much steeper than the students at both round 1 and 2. This suggests that the round-1 student achieves a flatter minima
as compared to its teacher.
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Figure 8: Contour visualization of the loss surface [40], original teacher model (left), student at self-distillation round
1 (middle), and student at self-distillation round 2 (right). All models used ResNet20 without skip connections. The
training procedure of is similar to [40]

These observations, when combined, suggest that the self-distilled student exhibits relatively flatter minima when
compared to a teacher trained from scratch. This is in line with the theoretically established results on induced
regularization (in the context of shallow models [46]) and could be used to explain why (a single round of) self-
distillation typically results provides better test accuracy.

7 Discussion

In this work, we investigate several facets of self-distillation. We show that even with a strong teacher that is trained
using modern techniques and augmentations, self-distillation still enables the student to surpass the teacher in terms
of test accuracy. Secondly, we revisit previous literature on self-distillation and reveal potential limitations of these
approaches. We then provide an alternative view on the success of self-distillation. In particular, we draw connections
between self-distillation and loss geometry, and empirically show that the self-distilled student is encouraged to find
flatter minima compared to the teacher; this may shed light on reasons behind its success.

As self-distillation (SD) is a special case of knowledge distillation (KD), we believe that understanding SD can help
us develop better techniques for KD, which already has become a cornerstone of real-world state-of-the-art model
building. An important open direction is the development of novel optimization procedures that implicitly perform (or
emulate) self-distillation, resulting improved student performance while avoiding cumbersome (and resource-intensive)
teacher-student knowledge transfer.
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Appendix

A Experiment Details

For training the neural networks, we use SGD with momentum of 0.9, learning rate 0.025, weight decay 3 × 10−4,
batch-size 96, and gradient clipping value of 5.0.

B SVHN results

Accuracy Trace λmax

Teacher 95.23 197.53 9.24
Round 1 (α = 0.5) 95.94 205.79 11.200
Round 2 (α = 0.5) 95.67 98.62 8.30
Round 3 (α = 0.5) 95.17 271.71 12.873

Table 3: SVHN Results for ResNet18
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C Additional BAN experiments

To investigate why BAN performs worse than normal ensembling, we calculate the difference (using Mean Square
Error) between the logits of the student and the teacher at every self-distillation step and report it in Figure 9. We can
see that the more self-distillation rounds that we perform, the more similar the predictive logits of the student model
and those of its teacher model. Therefore, training BAN for multiple generations leads to initial improvements that
gradually saturate, as observed by the authors, and this also indicates why increasing the number of rounds in BAN is
less effective than taking an ensemble of models.

Figure 9: Difference between logits of student and its teacher on CIFAR-10 test set at every self-distillation step. We
calculate the discrepency as follows 1

n

∑n
i=1‖f (k)(xi, θk)− f (k−1)(xi, θk−1)‖22

D Additional experiments on CIFAR-10/100
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Figure 10: Tracking trace and top eigenvalue in distillation steps on VGG16 for CIFAR100. All models use augmenta-
tion.
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