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ABSTRACT

In this paper, we study two important problems in the automated design of neural networks — Hyper-
parameter Optimization (HPO), and Neural Architecture Search (NAS) — through the lens of sparse
recovery methods.
In the first part of this paper, we establish a novel connection between HPO and structured sparse
recovery. In particular, we show that a special encoding of the hyperparameter space enables a natural
group-sparse recovery formulation, which when coupled with HyperBand (a multi-armed bandit
strategy), leads to improvement over existing hyperparameter optimization methods. Experimental
results on image datasets such as CIFAR-10 confirm the benefits of our approach.
In the second part of this paper, we establish a connection between NAS and structured sparse
recovery. Building upon “one-shot” approaches in NAS, we propose a novel algorithm that we
call CoNAS by merging ideas from one-shot approaches with a techniques for learning low-degree
sparse Boolean polynomials. We provide theoretical analysis on the number of validation error
measurements. Finally, we validate our approach on several datasets and discover novel architectures
hitherto unreported, achieving competitive (or better) results in both performance and search time
compared to the existing NAS approaches.

1 Introduction

1.1 Motivation

Despite the success of complex deep learning (DL) models in many data-driven tasks, these models often require a
substantial manual effort (involving trial-and-error) for choosing a suitable set of hyperparameters and architectures such
as learning rate, regularization coefficients, dropout ratio, filter sizes, and network size. Hyper-parameter optimization
(HPO) addresses the problem of searching for suitable hyperparameters that solve a given machine learning problem.
Furthermore, neural architecture search (NAS) methods seek to automatically construct a suitable architecture of neural
networks with competitive (or better) results over hand-designed architectures with as small computational budget as
possible.

In this paper, we propose two novel methods to solve HPO and NAS problems by borrowing ideas from sparse recovery
and compressive sensing (CS) [CT06, D+06]. CS has received significant attention in both signal processing and
statistics over the last decade, and has influenced the development of numerous advances in nonlinear and combinatorial
optimization. Compressive sensing provides an alternative to the conventional sampling paradigm by efficiently recover
a sparse signal either exactly or approximately from a small number of measurements.

In the context of HPO/NAS, the main challenge is to evaluate the test/validation performance of a (combinatorially)
large number of hyperparameters/architectures candidates. To overcome this, our methods leverage sparse recovery
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techniques to find an approximate, yet competitive, solution through fewer number of candidate performance evaluations
(measurements).

1.2 Our Contributions

Below, we describe our contributions for solving the HPO and NAS problems. The core to both of our solutions is an
adaptation of techniques for learning low-degree sparse Boolean polynomial functions.

1.2.1 Hyperparameter Optimization

We propose an extension to the Harmonica algorithm ([HKY17]), a spectral approach for recovering a sparse Boolean
representation of an objective function relevant to the HPO problem. While Harmonica successfully finds important
categorical hyperparameters, it does not excel in finding numerical, continuous hyperparameters (such as learning
rate). We propose a new group-sparse representation on continuous hyperparameter values that reduces not only the
dimension of the search space, but also groups the hyperparameters; this improves both accuracy and stability of HPO.
We provide visualizations of the achieved approximate minima by our proposed algorithm in hyperparameter space and
demonstrates its success for classification tasks.

1.2.2 Neural Architecture Search

We propose a new NAS algorithm called CoNAS (Compressive sensing-based Neural Architecture Search), which
merges ideas from sparse recovery with the so-called “one-shot” architecture search methods [BKZ+18], [LT19]
(Please see Section 6.1 for more details). The main idea is to introduce a new search space by considering a Boolean
function of the possible operations as a loss function of the NAS problem. We utilize the sparse Fourier representation
of the Boolean loss function as a new search strategy to find the (close)-optimal operations in the network. The
numerical experiments show that CoNAS can discover a deep convolutional neural network with reproducible test error
of 2.74 ± 0.12% for classifying of CIFAR-10 dataset. The discovered architecture outperforms the state-of-the-art
methods, including DARTs [LSY18], ENAS [PGZ+18], and random search with weight-sharing (RSWS) [LT19] (see
Table 3).

1.2.3 Theoretical Analysis

Finally, we analyze the performance of CoNAS by giving a sufficient condition on the number of performance
evaluations of sub-architectures; this provides approximate bounds on training time. This, to our knowledge, is one of
the first theoretical results in the NAS literature and may be of independent interest.

1.3 Techniques

In a nutshell, our solutions to these problems are based on [HKY17] and [SK12], which have shown how to encode set
functions using a sparse polynomial basis representation.

Since all HPO algorithms are computationally expensive, they should be parallelizable and scalable. Moreover, their
performance should be at least as good as the random search methods [FKH18]. To achieve these goals, we use
the idea of Hyperband from multi-armed bandit problems for parallelization coupled with the Harmonica algorithm
by [HKY17] for scalability and high performance. In particular, we first construct a Boolean cost function by binarizing
the hyperparameter space, and evaluating it with a small number of (sampled) training examples. This implies the
equivalency of estimating the Fourier coefficients and finding the best hyperparameters. Since only a few number of
hyperparameters can result in low cost function, estimating the Fourier coefficients boils down to a sparse recovery
problem from a small number of measurements. However, our results indicates that the support of non-zero coefficients
show some structure. By imposing this structure, we achieve better overall test error for a given computational budget.

Similar to HPO, NAS is also computationally intense. To address this issue, we utilize a one-shot approach [BKZ+18,
LT19] in which instead of evaluating several candidate architectures, a single “base” model is pre-trained. Then, a
set of sub-networks is selected and evaluated on a validation set, and the best-performing sub-network is chosen to
build a final architecture. We model the sub-network selection as a sparse recovery problem by considering a function
f that maps sub-architectures to a measure of performance (validation loss). Assuming that f can be written as a
linear combination of sparse low-degree polynomial basis functions, we can reconstruct f using a small number of
sub-network evaluations; hence, reducing overall computation time. Compared to [LSY18, PGZ+18], our search space
allows a search over a more diverse set of candidate architectures.
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The rest of this paper is organized as follows. In Section 2, we review some prior work on HPO and NAS problems.
Section 3 provides some definitions and mathematical backgrounds. In Section 4 and 5, we respectively introduce our
HPO algorithm and the supportive experimental results. In section 6 and 7, we present our NAS algorithm with rigorous
theoretical analysis and experimental results, respectively. We conclude this paper in section 8.

2 Related Work

2.1 Prior Work in Hyperparameter Optimization (HPO)

HPO methods based on brute-force techniques such as exhaustive grid search are prohibitive for large hyperpa-
rameter spaces due to their exponential time complexity. One remedy for this problem is introduced by Bayesian
Optimization (BO) techniques in which a prior distribution over the cost function is defined (typically a Gaussian
process), and is updated after each “observation” (i.e., measurement of training loss) at a given set of hyperparam-
eters [BBBK11, HHLB11, SLA12, THHLB13, EFH+13, SSZA14, IAFS17]. Subsequently, an acquisition function
samples the posterior to form a new set of hyperparameters, and the process iterates. Despite the popularity of BO
techniques, they often provide unstable performance, particularly in high-dimensional hyperparameter spaces. An
alternative approach to BO is Random Search (RS), with efficient computational time, strong “anytime” performance
with easy parallel implementation [BB12].

Multi-armed bandit (MAB) methods adapt the random search strategy to allocate the different resources for ran-
domly chosen candidates to speed up the convergence. However, random search and the BO approaches spend full
resources. Successive Halving (SH) and Hyperband are two examples of MAB methods, which ignore the hyper-
parameters with poor performance in the early state [JT16, LJD+17, KDVN18]. In contrast with BO techniques
(which are hard to parallelize), the integration of BO and Hyperband achieve both advantages of guided selection and
parallelization [WXW18, FKH18, BAPB17].

Gradient descent methods [Ben00, MDA15, LBGR15, FLF+16, FDFP17] (or more broadly, meta-learning approaches)
have also been applied to solve the HPO problem, but these are only suitable to optimize continuous hyperparameters.
Since this is a very vast area of current research, we do not compare our approach with these techniques.

While BO dominates model-based approaches, a recent technique called Harmonica utilize a spectral approach by
applying sparse recovery techniques on a Boolean version of the objective function. This gives Harmonica the benefit
of reducing the dimension of the hyperparameter space by quickly finding influential hyperparameters [HKY17].

2.2 Prior Work in Neural Architecture Search

Early NAS algorithms were using reinforced learning (RL) based controllers [ZVSL18], evolutionary algorithms
[RAHL19], or sequential model-based optimization (SMBO) [LZN+18]. The performance of these methods is com-
petitive with the manually-designed architectures such as deep ResNets [HZRS16] and DenseNets [HLVDMW17].
However, they require substantial computational resources, e.g., thousands of GPU-days. Other NAS approaches
have focused on boosting search speeds by proposing novel search strategies, such as differentiable search tech-
nique [CZH19, LSY18, NNR+19, LTQ+18, XZLL18] and random search via sampling sub-networks from a one-shot
super-network [BKZ+18, LT19]. In particular, DARTs [LSY18] is based on a bilevel optimization by relaxing the dis-
crete architecture search space to a differentiable one via softmax operations. This relaxation makes it faster by orders of
magnitude while achieving competitive performance compared to previous works [ZL17, ZVSL18, RAHL19, LZN+18].

Other recent methods include RL approaches via weight-sharing [PGZ+18], network transformations [CCZ+18,
EMH19, JDO+17, JSH18, LSV+17, HLC+19], and random exploration [LJR+18, LT19, SYJ+19, XKGH19]. None
of these methods has explored utilizing the sparse recovery techniques for NAS. The closest approach to ours but a
different objective is the one proposed by [SK12] which learns a sparse graph from a small number of random cuts.
While [SK12] emphasizes on linear measurements, CoNAS takes a different perspective by focusing on measurements
that map sub-networks to performance, which are fundamentally nonlinear.

In [BKZ+18], the authors provided an extensive experimental analysis on one-shot architecture search based on weight-
sharing and correlation between the one-shot model (super-graph) and stand-alone model (sub-graph). The authors
of [LT19] proposed a simplified training procedures compare to [BKZ+18] without neither super-graph stabilizing
techniques such as path dropout schedule on a direct acyclic graph (DAG) nor ghost batch normalization. We defer the
details of super-graph training from [LT19] in Section 6.1.

The combination of random search via one-shot models with weight-sharing provides the best competitive baseline
results reported in the one-shot NAS literature. Our CoNAS approach improves upon these reported results.

3



3 Preliminaries

3.1 Fourier Analysis of Boolean Functions

Throughout this paper, we denote the vectors with bold letters. Also, [n] denotes the set {1, 2 . . . , n}. A real-valued
Boolean function is one that maps n-bit binary vectors (i.e., vertices of a hypercube) to real values: f : {−1, 1}n → R.
Such functions can be represented in a basis comprising real multilinear polynomials called the Fourier basis as
follows [O’D14].
Definition 3.1. For S ⊆ [n], define the parity function χS : {−1, 1}n → {−1, 1} such that χS(α) =

∏
i∈S αi. Then,

the Fourier basis is the set of all 2n parity functions {χS}.

The key fact is that the basis of parity functions forms an K-bounded orthonormal system (BOS) with K = 1. That is:

〈χS , χT 〉 =

{
1, if S = T

0, if S 6= T
and (3.1)

sup
α∈{−1,1}n

|χS(α)| ≤ 1 for all S ⊆ [n], (3.2)

As it has been shown in [O’D14], any Boolean function f has a unique Fourier representation as f(α) =∑
S⊆[n] f̂(S)χS(α), with Fourier coefficients f̂(S) = Eα∈{−1,1}n [f(α)χS(α)] where expectation is taken with

respect to the uniform distribution over the vertices of the hypercube. For many objective function in machine learning,
the Fourier spectrum of the function is concentrated on monomials of small degree (≤ d) (e.g., decision trees [HKY17]).
Leveraging this property simplifies the Fourier expansion by limiting the number of basis functions. Let Pd ⊆ 2[n] be a
fixed collection of Fourier basis such that Pd := {χS ⊆ 2[n] : |S| ≤ d}. Then, Pd ⊆ 2[n] induces a function space,
consisting of all functions of order d or less, denoted by HPd := {f : Supp[f̂ ] ⊆ Pd}. For example, P2 allows us
to express the function f with at most

∑d
l=0

(
n
l

)
≡ O(n2) Fourier coefficients. Next, we define the restriction of a

function f to some index set J .

Definition 3.2. Let f : {−1, 1}n → R, (J, J) be a partition of [n], and z ∈ {−1, 1}J . The restriction of f to J using
z denoted by fJ|z : {−1, 1}J → R is the subfunction of f given by fixed coordinates in J to the values of z.

4 Hyperparameter Optimization

In this section, we present our HPO algorithm. We restrict our attention to discrete domains (we assume that continuous
hyperparameters have been appropriately binned). Let f : {−1, 1}n 7→ R be the loss function we want to optimize.
Assume there exists k different types of hyperparameters. In other words, we allocate ni bits to the ith hyperparameter
category such that

∑k
i=1 ni = n. The task of HPO involves searching the global minimizer(s) of the following

optimization problem as the best hyperparameters:

α∗ = arg min
α∈{−1,1}n

f(α). (4.1)

We propose Polynomial Group-Sparse Recovery within Hyperband (PGSR-HB), a new HPO search algorithm which
significantly reduces the size of hyperparameter space. We combine Hyperband, the multi-armed bandit method that
balances exploration and exploitation from uniformly random sampled hyperparameter configurations, with a group
sparse version of Polynomial Sparse Recovery. Algorithm 1 shows the pseudocode of PGSR-HB.

PGSR-HB adopts the decision-theoretic approach of Hyperband, but with the additional tracking the history of all
loss values from different resources. Lines 7-14 in Algorithm 1, illustrates the Successive Halving (SH) subroutine
of Hyperband, a early performance (e.g. validation loss) in the process of training indicates which hyperparameter
configurations are worth investing further resources, and which ones are fit to discard. We defer the pseudocode of SH
and Hyperband in the Appendix A.1.

Now, let R denote the (units of computational) resource to be invested in one round to observe the final performance of
the model. Let η denote a scaling factor and c be the total number of rounds. Defining smax = logη R, the total budget
spent from SH is given by B = (smax + 1)R. In addition, Line 6 of Algorithm 1 invokes a sub-routine (discussed
below) to sample n configurations given as follows:

n = dB
R

ηs

(s+ 1)
e (4.2)
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Algorithm 1 PGSR-HB

1: Inputs: Resource R, scaling factor η, total cycle c
2: Initialization: smax = blogη(R)c, B = (smax + 1)R, input history Hinput = ∅, output history Houtput = ∅
3: for round = 1 : c do
4: for s ∈ {smax, smax − 1, . . . , 0} do
5: n = dBR

ηs

(s+1)e, r = Rη−s

6: T = PGSR Sampling(n)
7: for i ∈ {0, . . . , s} do
8: ni = bnη−ic
9: ri = rηi

10: L = {f(t, ri) : t ∈ T}
11: Hinput,ri ← Hinput,ri

⋃
T

12: Houtput,ri ← Houtput,ri

⋃
L

13: T = topk(T, L, bniη c)
14: end for
15: end for
16: end for
17: return Configuration with the smallest loss
Sub-algorithm - PGSR Sampling
18: Input: Hinput, Houtput, sparsity s, polynomial degree d, minimum observations T , randomness ratio ρ
19: if every |Houtput,r| < T then return random sample from original domain of f .
20: end if
21: Pick Hinput,r and Houtput,r with largest r: |Houtput,r| ≥ T .
22: Group Fourier basis based on hyperparameter structure.
23: Solve

α∗ = arg min
α

1

2
‖y −

m∑
l=1

Ψlαl‖22 + λ

m∑
l=1

√
pl‖αl‖2

24: Let S1, . . . Ss be the indices of the largest coefficient of α. Then, g(α) =
∑
i∈[s] αSiχSi(α) and J =

⋃s
i=1 Si

25: With probability ρ, return random sample from original domain of f ; else return random sample from reduced
domain of fJ,α∗ .

Also, the test loss is computed with r = Rη−s epochs of training. The function f(t, ri) in Algorithm 1 (Line 10) returns
the intermediate test loss of a hyperparameter configuration t with ri training epochs. Since the test loss is a metric to
measure the performance of the model, the algorithm keeps only the top 1

η configurations (Line 13) and repeats the
process by increasing number of epochs by the factor of η until r reaches to resource R. While SH introduces a new
hyperparameter s, SH aggressively explores the hyperparameter space as s close to smax. SH with s = 0 is equivalent
to random search (aggressive exploitation).2

4.1 PGSR Sampling

As PGSR-HB collects the outputs of the function f , PGSR-Sampling estimates Fourier coefficients of the function f
using techniques from sparse recovery to reduce the hyperparameter space. We now introduce a simple mathematical
expression that efficiently induces additional sparsity in the Fourier representation of f . Given k categories (i =
1, . . . , k), let g and h be two functions that map binary numbers xi and yi with respectively αi and βi digits to the set
of integers with cardinality 2αi and 2βi . Then we express the ith real-valued hyperparameter, hpi with corresponding
binary digits xi and yi in a log-linear manner as follows:

hpi = 10g(xi) · h(yi) (4.3)

Our experimental results show how the above nonlinear binning representation induces sparsity on function g. While
PSR in Harmonica recovers the Boolean function with Lasso [Tib96], the intuitive extension (arising from the above
log-linear representation) is to replace sparse recovery with Group Lasso [YL06]. This is used in Line 23 of Algorithm 1
as we group them based on the g and h based on the hyperparameter categories. Let y ∈ Rm be the observation vector

2The algorithm with one cycle contains (smax + 1) subroutines of SH during which it tries different levels of exploration and
exploitation with all possible values of s.
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and x ∈ {−1, 1}n, and devide the hyperparameters into k+k groups (corresponding to functions g and h). Let Ψl is the
submatrix of Ψ ∈ Rm×(

∑d
i=1 (ni)) where its columns match the lth group. Similarly, αl is a weight vector corresponding

to the submatrix Ψl and pl denotes the length of vector αl. In order to construct the submatrices as the Fourier basis
with the hyperparameter structure, we assume that there exist a set of groups G = {g1, . . . , gk, h1, . . . , hk} as defined
above. If there are γ possible combinations of groups from G such that a d-degree Fourier basis exists (γ =

∑d
i=1

(
2k
i

)
),

we derive the k submatrices Ψ1, . . . ,Ψγ using Definition 3.1. Then the problem is equivalent to a convex optimization
problem known as the Group Lasso:

min
α

1

2
‖y −

m∑
l=1

Ψlαl‖22 + λ

m∑
l=1

√
pl‖αl‖2 (4.4)

Finally, the algorithm requires the input ρ, representing a reset probability parameter that produces random samples
from the original reduced hyperparameter space. This parameter prevents the biased in different PGSR stages.

4.2 Differences between PGSR-HB and Harmonica

The standard Harmonica method samples the measurements under a uniform distribution. It then runs the search
algorithm to recover the function f with PSR (the sparse recovery through l1 penalty, or standard Lasso). Moreover, the
number of randomly sampled measurements and its resources (training epochs) needs to be given before starting the
search algorithm. we note that the reliability of measurements hugely depends on the number of resources used on each
sampled point. While investing enormous resources in recovering Fourier coefficients guarantees the success of the
Lasso recovery, this is inefficient with respect to total budget. On the other hand, collecting the measurements with
small resources make PSR fail to provide the correct guidance for the outer search algorithm. Since PGSR-HB gathers
all the function outputs – from cheap resources to the most expensive resources – PGSR-HB eliminates the need to set
an explicit number of samples and training epochs as in Harmonica. We have also tried other penalties, and observed
that the regularized regression tends to learn slower than the models without a regularization; thus, misleading the
search algorithm with the worst performance. While the experimental results in [HKY17] shows promising results in
finding the influential categorical hyperparameters such as presence/absence of the Batch-normalization layer, it cannot
be used directly in optimizing the numerical hyperparameters such as learning rate, weight decay, and batch size. One
the other hand, PGSR-HB overcomes this limitation of Harmonica with the log-linear representation in equation 4.3
and Group Lasso equation 4.4.

5 HPO Experimental Results

5.1 Robustness Test

We verify the robustness of PGSR-HB by generating a test loss surface picking two hyperparameter categories as
shown in Figure 1. We calculate the test loss by training 120 epochs for classification of CIFAR-10 data set. We use
the convolutional neural network architecture from the cuda-convnet-82% model that has been used in previous work
([JT16] and [LJD+17]). The range of learning rate and the weight-decay on the first convolutional layer is set to be in
10−6 to 102. We use the log scale on both horizontal and vertical axis for the visualize of the loss surface.

Table 1 compares the performance of PGSR and PSR with equation 4.3, and PSR with evenly spaced hyperparameter
values in log scale. The third and fourth columns in Table 1 list the reduced hyperparameter space for learning rate and
l2 regularization coefficient for first convolution layer for each algorithm. From the comparison between the reduced
search space and hyperparameter loss surfaces from Figure 2 and Figure 3, we observe equation 4.3 reduce the search
domain more accurately than without equation 4.3. Imposing structured sparsity on the hyperparameters by grouping
them not only helps PGSR to return the correct guidance, but also it stabilize the lasso coefficient λ as shown in the test
loss surfaces (Figure 2 and Figure 3) with PGSR results in Table 1.

Next, we optimize the five categories of hyperparameters including the learning rate, three convolution layers’ and l2
regularization coefficient of the fully connected layer using the architecture and dataset used in the previous section. We
train the network using the stochastic gradient descent without a momentum and diminish the learning rate by a factor
0.1 every 100 epochs. We compare the test loss and accuracy of SH, Hyperband, doubled budgets Random Search with
PGSR-HB algorithm. We set the resource, R = 243 and the discard ratio input η = 3. Training epochs is the same for
all the algorithms except Random Search with times more training epochs. We run each algorithm in Table 2 for four
different trials. The results verify the effectiveness of reducing the hyperparameter space through PGSR as the new
algorithm returns better performance for most of the trials. Moreover, PGSR-HB finds the optimal hyperparameters
with 83% test accuracy, outperforming the other algorithms from all trials.
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Figure 1: Test loss surface with two hyperparameters. Learning rate vs conv1 l2 penalty.

Table 1: Reduced Search Domain Comparison on Learning Rate and Conv1 L2
Method λ Learning Rate Conv1 Penalty

PGSR 0.5 [10−3,10−2] [10−5,10−4]
PGSR 1.0 [10−3,10−2] [10−5,10−4]
PGSR 2.0 [10−3,10−2] [10−5,10−4]
PSR 0.5 [10−3,10−2] [10−6, 102]
PSR 1.0 [10−4, 10−3] [10−3, 10−2]
PSR 2.0 [100, 102] [10−3, 10−2]
PSR w/o equation 4.3 0.5 [10−4, 10−2] [10−6, 10−3]
PSR w/o equation 4.3 1.0 [10−4, 10−2] [10−6, 10−3]
PSR w/o equation 4.3 2.0 [10−4, 10−2] [10−6, 10−4]

Table 2: CNN Test Loss and Accuracy on CIFAR-10
Algorithm RS 2x SH HB PGSR-HB

Loss (I) 0.7118 0.7001 0.7150 0.6455
Acc (I) 81.17% 79.69% 78.74% 82.79%

Loss (II) 0.6988 0.7179 0.6921 0.6764
Acc (II) 79.51% 79.30% 81.67% 83.00%

Loss (III) 0.6850 0.6747 0.6960 0.6467
Acc (III) 79.02% 79.80% 81.47% 80.39%

Loss (IV) 0.7293 0.6499 0.7215 0.6619
Acc (IV) 77.70% 80.68% 80.81% 81.64%

7



Figure 2: The view from learning rate axis.

6 Neural Architecture Search

In this section, we propose a a new algorithm referred to as Compressed-based Neural Architecture Search (CoNAS) for
searching the CNN models. In addition, we support the performance of CoNAS with theoretical analysis. Our proposed
algorithm is a novel perspective of merging the existing one-shot NAS methodology with the sparse recovery techniques.
This boosts the search time to select a final candidate while outperforms existing the state-of-the-art methods.

6.1 Background on One-Shot NAS

In this section, we first briefly describe one-shot NAS techniques with respect to the search space, performance
estimation strategy, and search strategy [EMH18]. Please see [BKZ+18, LT19] for more discussion.

6.1.1 Search Space

Following [ZVSL18], the one-shot method searches the optimal cell as the building block (similar to [SLJ+15],
[HZRS16], [HLVDMW17]) to construct the final architecture. A cell is a directed acyclic graph (DAG) consisting of
N nodes. A jth node, n(j) where j ∈ [N ], has directed edges (i, j) from n(i) where i < j and i ∈ [N ] such that (i, j)
transforms the node n(i) to n(j). Let O is the operation set (e.g. 3x3 max-pool, 3x3 average-pool, 3x3 convolution,
identity in convolutional network), and there exists |O| direct edges between n(i) and n(j). Let f (i,j) maps n(i) to n(j)

by summing all transformation of n(i) defined in O. Each intermediate nodes (corresponding to latent representation in
general) is computed by the addition of all transformation from predecessor nodes:

n(j) =
∑
i<j

f (i,j)(n(i)) (6.1)

As each nodes are connected from previous nodes by summing all possible operations in its operation set O, one-shot
NAS literature also describe this as “weight-sharing” methods.

8



Figure 3: The view from conv1 l2 penalty axis.

6.1.2 Performance Estimation Strategy

The one-shot NAS models the surrogate function which takes the network architecture encoded vectors and returns the
estimated performance of the sub-network. [LT19] and [BKZ+18] adopts the weight-sharing paradigm following the
equation 6.1. Let α ∈ {−1, 1}n be the architecture encoder string where n is the total number of edges in the DAG. The
one-shot surrogate model, the function f : {−1, 1}n → R, which trained only once estimates the performance of each
sub-network without training individually. While early methods including [ZVSL18] required expensive computational
budget, weight-sharing paradigm significantly increased the search efficiency.

We summarize the one-shot NAS training protocol from [LT19], the training algorithm we adopted for training the
super-network (surrogate model). [LT19] suggests the simple super-network training protocol as shown in Algorithm 2.

Algorithm 2 PSEUDO CODE OF ONE-SHOT MODEL TRAINING FROM [LT19]

1: while not converged do
2: Randomly sample the architecture from DAG.
3: Calculate the backward pass for a given minibatch.
4: Update the weights only corresponds to the edges activated from randomly sampled architecture.
5: end while

6.1.3 Search Strategy

Both [BKZ+18] and [LT19] explores the optimal architecture based on random search. While vanilla random search
trains each candidates until its convergence (which requires exhaustive computation), one-shot model estimates the
performance of candidate architecture by one forward pass evaluation. This allows to explore immense number of
candidates than the vanilla random search given equivalent computational budgets.
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Figure 4: Overview of CoNAS. A one-shot neural network model f is pre-trained, and an appropriate sub-graph of f is
chosen by applying a sparse recovery technique. Iterative sparse recoveries allow to find the larger sub-graph from f .
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Figure 5: Diagram inspired by [BKZ+18]. The example architecture encoder α samples the sub-architecture for N = 5
nodes (two intermediate nodes) with five different operations. Each component in α maps to the edges one-to-one in all
Choice blocks in a cell. If a bit in α corresponds to 1, the edge activates, while −1 turns off the edge. Since the CNN
search space finds both normal cell and reduce cell, the length of α is equivalent to (2 + 3) · 5 · 2 = 50.

6.2 Proposed Algorithm

Our proposed algorithm, Compressive sensing-based Neural Architecture Search (CoNAS), infuses ideas from learning
a sparse graph (Boolean Fourier analysis) into one-shot NAS. CoNAS consists of two novel components: an expanded
search space, and a more effective search strategy. Figure 4 shows the overview idea of CoNAS.

Our first ingredient is an expanded search space. Following the approach of DARTS [LSY18], we define a directed
acyclic graph (DAG) where all predecessor nodes are connected to every intermediate node with all possible operations.
We represent any sub-graph of the DAG using a binary string α called the architecture encoder. Its length is the total
number of edges in the DAG, and a 1 (resp. −1) in α indicates an active (resp. inactive) edge.
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Figure 6: Convolution Cell found from CoNAS. The reduce cell found from CoNAS have a missing connection between
ck−1 and intermediate nodes which is a valid architecture in our search space.

Figure 5 gives an example of how the architecture encoder α samples the sub-architecture of the fully-connected
model in case of a convolutional neural network. The goal of CoNAS is to find the “best” encoder α∗, which is ”close
enough” to the global optimum returning the best validation accuracy by constructing the final model with α∗ encoded
sub-graph.

Since each edge can be switched on and off independently, the proposed search space allows exploring a cell with more
diverse connectivity patterns than DARTS [LSY18]. Moreover, the number of possible configurations exceeds similar
previously proposed search spaces with constrained wiring rules [LT19, PGZ+18, ZVSL18, RAHL19].

We propose a compressive measuring strategy to approximate the one-shot model with a Fourier-sparse Boolean function.
Let f : {−1, 1}n → R map the sub-graph of the one-shot pre-trained model encoded by α to its validation performance.
Similar to [HKY17], we collect a small number of function evaluations of f , and reconstruct the Fourier-sparse function
g ≈ f via sparse recovery algorithms with randomly sampled measurements. Then, we solve arg minα g(α) by
exhaustive enumeration over all coordinates in its sub-cube {−1, 1}J where (J, J) partitions [n] (Definition 3.2)3.
If the solution of the arg minα g(α) does not return enough edges to construct the cell (some intermediate nodes
are disconnected), we simply connect the intermediate nodes to the previous cell output, Cellk−2, using the Identity
operation (this does not increase neither the model size nor number of multiply-add operations). Larger cells can be
found from multiple iterations by restricting the approximate function g and with fixing the bit values found in the
previous solution, and randomly sampling sub-graphs in the remaining edges.

We now describe CoNAS in detail, with pseudocode provided in Algorithm 3. We first train a one-shot model with
standard backpropagation but only updates the weight corresponding to the randomly sampled sub-graph edges for each
minibatch. Then, we randomly sample sub-graphs by generating architecture encoder strings α ∈ {−1, 1}n using a
Bernoulli(p) distribution for each bit of α independently (We set p = 0.5).

In the second stage, we collect m measurements of randomly sampled sub-architecture performance denoted by
y = (f(α1), f(α2), . . . , f(αm))T . Next, we construct the graph-sampling matrix A ∈ {−1, 1}m×|Pd| with entries

Al,k = χSk(αl), l ∈ [m], k ∈ [|Pd|], S ⊆ [n], |S| ≤ d, (6.2)

3This is similar to the idea of de-biasing in the Hard-Thresholding (HT) algorithm [FR17] where the support is first estimated,
and then within the estimated support, the coefficients are calculated through least-squares estimation.
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Algorithm 3 PSEUDOCODE OF CONAS

1: Inputs: Number of one-shot measurements m, stage t, sparsity s, lasso parameter, λ, Bernoulli p

Stage 1 – Training the One-Shot Model

2: procedure MODEL TRAINING
3: while not converged do
4: Randomly sample a sub-architecture encoded binary vector α according to Bernoulli(p)
5: Update wα by descending∇wαLtrain(wα)
6: end while
7: end procedure

Stage 2 – Search Strategy

8: procedure ONE-SHOT MODEL APPROXIMATION VIA COMPRESSIVE SENSING
9: for k ∈ {1, . . . , t} do

10: Collect y = (f(α1), f(α2), . . . , f(αm))>.
11: Solve

x∗ = arg min
x

‖y −Ax‖22 + λ‖x‖1

12: Let x∗1, x
∗
2, . . . , x

∗
s be the s absolutely largest coefficients of x∗. Construct

g(α) =

s∑
i=1

x∗iχi(α)

13: Compute minimizer z = arg minα g(α) and let J the set of indices of z
14: f = fJ|z
15: end for
16: Construct the cell by activating the edge where zi = 1 where i ∈ [n].
17: end procedure

where d is the maximum degree of monomials in the Fourier expansion, and Sk is the index set corresponding to kth

Fourier basis. We solve the familiar Lasso problem [Tib96]:
x∗ = arg min

x∈R|Pd|
‖y −Ax‖22 + λ‖x‖1, (6.3)

to (approximately) recover the global optimizer x∗, the vector contains the Fourier coefficients corresponding to Pd.
We define an approximate function g ≈ f with Fourier coefficients with the top-s (absolutely) largest coefficients from
x∗, and compute α∗ = arg minα g(α), resulting all the possible points in the subcube defined by the support of g (this
computation is feasible if s is small). Multiple stages of sparse recovery (with successive restrictions to previously
obtained optimal α∗) enable us to approximate additional monomial terms. Finally, we obtain a cell to construct the
final architecture by activating the edges corresponding to all i ∈ [n] such that α∗i = 1.

6.3 Theoretical Analysis for CoNAS.

The system of linear equations y = Ax with the graph-sampling matrix A ∈ {−1, 1}m×O(nd), measurements y ∈ Rm,
and Fourier coefficient vector x ∈ RO(nd) is an ill-posed problem when m � O(nd) for large n. However, if the
graph-sampling matrix satisfies Restricted Isometry Property (RIP), the sparse coefficients, u can be recovered:

Definition 6.1. A matrix A ∈ Rm×O(nd) satisfies the restricted isometry property of order s with some constant δ if
for every s-sparse vector u ∈ RO(nd) (i.e., only s entries are non-zero) the following holds:

(1− δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22.

We defer the history of improvements on the upper bounds of the number of rows from bounded orthonormal dictionaries
(matrix A) for which A is guaranteed to satisfy the restricted isometry property with high probability in Appendix A.2.
To the best of our knowledge, the best known result with mild dependency on δ (i.e., δ−2) is due to [HR17], which
we can apply for our setup. It is easy to check that the graph-sampling matrix A in our proposed CoNAS algorithm
satisfies BOS for K = 1 (Eq 6.2).
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Table 3: Comparison with hand-designed networks and state-of-the-art NAS methods on
CIFAR-10 (Lower test error is better). The average test error of our experiment used five
random seeds. Table entries with ”-” indicates that either the field is not applicable or unknown.
The methods listed in this table are trained with auxiliary towers and cutout augmentation.

Test Error Params Multi-Add Search
Architecture (%) (M) (M) GPU days

PyramidNet [YIAK18] 2.31 26 - -
AutoAugment [CZM+19] 1.48 26 - -

ProxylessNAS [CZH19] 2.08 5.7 - 4
NASNet-A [ZVSL18] 2.65 3.3 - 2000
AmoebaNet-B [RAHL19] 2.55± 0.05 2.8 - 3150
GHN+ [ZRU18] 2.84± 0.07 5.7 - 0.84
SNAS [XZLL18] 2.85± 0.02 2.8 - 1.5
ENAS [PGZ+18] 2.89 4.6 - 0.45
DARTs [LSY18] 2.76± 0.09 3.3 548 4
Random Search [LSY18] 3.29± 0.15 3.1 - 4
ASHA [LT19] 2.85|3.03± 0.13 2.2 - -
RSWS [LT19] 2.71|2.85± 0.08 3.7 634 2.7
DARTs# [LT19] 2.62|2.78± 0.12 3.3 - 4

DARTs† 2.59|2.78± 0.13 3.4 576 4
CoNAS (t=1) 2.57|2.74± 0.12 2.3 386 0.4
CoNAS (t=4) 2.55|2.62± 0.06 4.8 825 0.5
CoNAS (t=1, C=60)++AutoAugment 1.87 6.1 1019 0.4

# DARTS experimental results from [LT19].
† Used DARTS search space with five operations for direct comparisons.
+ ‘C’ stands for the number of initial channels. Trained 1,000 epochs with AutoAugment.

Theorem 6.2. Let the graph-sampling matrixA ∈ {−1, 1}m×O(nd) be constructed by takingm rows (random sampling
points) uniformly and independently from the rows of a square matrix M ∈ {−1, 1}O(nd)×O(nd). Then the normalized
matrix A with m = O(log2( 1

δ )δ−2s log2( sδ )d log(n)) with probability at least 1 − 2−Ω(d logn log( sδ )) satisfies the
restricted isometry property of order s with constant δ; as a result, every s-sparse vector u ∈ RO(nd) can be recovered
from the sample yi’s:

y = Au =
( |O(nd)|∑

j=1

ujAi,j

)m
i=1

, (6.4)

by LASSO (equation 6.3).

Proof. First, we note that the graph-sampling matrix A is a BOS matrix with K = 1; hence, directly invoking Theorem
4.5 of [HR16] to our setting, we can see that matrix A satisfies RIP. Now according to Theorem 1.1 of [Can08], letting
δ <
√

2− 1, the l1 minimization or LASSO will recover exactly the s sparse vector u. For instance, in our experiments,
we have selected m = 1000 which is consistent with our parameters, d = 2, s = 10, n = 140.

Here, it is worthwhile to mention two points: first, the above upper bound on the number of rows of the graph-sampling
matrix A is the tightest bound (according to our knowledge) for the BOS matrices to satisfy RIP. There exist series
of results establishing the RIP for BOS matrices during the last 15 year. We have reviewed these results in the
Appendix A.2. Second, instead of LASSO, one can use any sparse recovery method (such as IHT [BD09]) in our
algorithm. In essence, Theorem 6.2 provides a successful guarantee for recovering the optimal sub-network of a given
size given a sufficient number of performance measurements.
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Table 4: Image Classification Test Error of CoNAS on Multiple Datasets. We compare the performance of CoNAS
on different datasets with existing NAS results. The experiment details for CoNAS is described in Appendix A.3.

CIFAR100 SVHN F-MNIST Params Search
Arch (%) (%) (%) (M) (GPU)

[XZLL18] 16.5 1.98 3.73 2.8 1.5
[LZN+18] 15.9 1.83 3.72 3.2 150
[ZVSL18] 15.8 1.96 3.71 3.3 1800
[LSY18] 15.8 1.85 3.68 3.4 1
[RAHL19] 15.9 1.93 3.8 3.2 3150
[NNR+19] 15.6 1.81 3.73 2.5 0.2

CoNAS 15.9 1.44 4.11 2.3 0.4

Experimental result of [XZLL18], [LZN+18], [ZVSL18], [LSY18], [RAHL19],
[NNR+19] are taken from [NNR+19].

7 NAS Experimental Results

We experiment on image classification NAS problems: CNN search on CIFAR-10, CIFAR-100, Fashion MNIST and
SVHN. We describe the training details for CIFAR-10 in Sections 7.1. Our evaluation setup for training the final
architecture (CIFAR-10) is the same as that reported in DARTS and RSWS.

7.1 Convolutional Neural Network

Architecture Search. We create a one-shot architecture similar to RSWS with a cell containing N = 7 nodes with
two nodes as input and one node as output; our wiring rules between nodes are different and as in Figure 5. We used
five operations: 3 × 3 and 5 × 5 separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling, and Identity.
On CIFAR-10, we equally divide the 50, 000-sample training set to training and validation sets to train one-shot
super-network, following [LT19] and [LSY18]. We train a one-shot model by sampling the random sub-graph under
Bernoulli(0.5) sampling with eight layers and 16 initial channels for 100 training epochs. All other hyperparameters
used in training the one-shot model are the same as in [LT19].

We run CoNAS in two different settings to find small and large size CNN cells. Specifically, we use the sparsity
parameters s = 10, Fourier basis degree d = 2, and Lasso coefficient λ = 1 (We include experiments with varying
lasso coefficients in Subsection 7.3). As a result, we found the normal cell and reduce cell with one sparse recovery
stage as shown in Appendix 6 (the larger CNN cells were found with multiple sparse recovery stages). Repeating four
stages (t = 4) of sparse recovery with restriction in definition (3.2) returns an architecture encoder α∗ with numerous
operation edges in the cells (Please see Figure 7 for the found architecture). Now, we evaluate the model found by
CoNAS as follows:

Architecture Evaluation. We re-train the final architecture with the learned cell and with the same hyperparameter
configurations in DARTS to make the direct comparisons. We use NVIDIA TITAN X, GTX 1080, and Tesla V100 for
final architecture training process. We use TITAN X for searching the architecture for our experiment to conduct the
fair comparison on search time. CONAS search time in Table 3 includes both training an one-shot model and gathering
measurements. CoNAS cells from four sparse recovery stages (t=4) cannot use the same minibatch size (i.e., 96) used
in DARTs and RSWS, due to the hardware constraint; instead, we re-train the final model with minibatch size 56 with
TITAN X.

CoNAS architecture with one sparse recovery (t=1) outperforms DARTs and RSWS (stronger than vanilla random
search) in test errors with smaller parameters, multiply-addition operations, and search time. In addition, CoNAS with
four recovery stages (t=4) performs better than CoNAS (t=1) on both lower test error average and deviation; however, it
requires larger parameters and multiply-add operations compared to DARTs, RSWS, and CoNAS (t=1). We also train
CoNAS (t=1) with increasing the number of channels from 36 to 60 and training epochs from 600 to 1,000 together
with a recent data augmentation technique called AutoAugment [CZM+19], which breaks through 2% test error barrier
on CIFAR-10.
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Table 5: Lasso Parameter Stability Experiment.

Criteria λ = 0.5 λ = 2.0 λ = 5.0 λ = 10.0 Random

Hamming Dist. 0 0 8 12 29
Test Error (%) 3.74 3.74 3.51 3.62 4.43
Param (M) 2.3 2.3 2.6 2.6 2.7
MADD (M) 386 386 455 449 444

7.2 Transfer to other datasets

We test the cell found from CIFAR-10 to evaluate the transferability to different datasets: CIFAR-100, SVHN, and
Fashion-MNIST in Table 4. As we can see, CoNAS achieves the competitive results with the smallest architecture size
(equivalent to number of parameter) compared to the other algorithms.

7.3 Stability on Lasso Parameters

We check our algorithm’s stability on lasso parameter by observing the solution given exact same measurements.
Denote α∗λ=l as the architecture encoded output from CoNAS given λ = l. We compare the hamming distance and the
test error between α∗λ=1 and other λ values (λ = 0.5, 2, 5, 10). The average support of the solution from one sparse
recovery is 15 out of the 140 length. The average hamming distance between two randomly generated binary strings
with supp(α∗) = 15 from 100, 000 samples was 27.58 ± 1.82. Our experiment shows a stable performance under
various lasso parameters with small hamming distances regards to various λ. Also we measure the average test error
with 150 training epochs on different λ values as shown in Table 5. For the baseline comparison, we compare CoNAS
solutions with the randomly chosen architecture with 15 operations (edges).

7.4 Discussion

Noticeably, CoNAS achieves improved results on CIFAR-10 in both test error and search cost when compared to the
previous state-of-the-art algorithms: DARTs, RSWS, and ENAS. In addition, not only CoNAS finds the cell with
smallest parameter size and multiply-add operations than the other NAS approaches, but also it obtains a better test
error with 2.57%. Many previous NAS papers have focused on the search strategy, while adopted the same search
space to [ZVSL18] and [LSY18]. Our experimental results highlight the importance of both seeking new performance
strategies and the search space.

8 Conclusions

In this paper, we considered the problems of hyperparameter optimization and neural architecture search through the
lens of compressive-sensing. As our primary contribution, we first extended Harmonica algorithm by introducing the
new log-linear representation for numerical hyperparameters by posing group sparsity in hyperparameters space. We
support our algorithms by providing some experiments for the classification task and by visualizing the reduction of the
hyperparameters space. We also tackled neural architecture search problem and proposed CoNAS, which expresses the
surrogate function of the one-shot super-network via Boolean loss function. We supported our NAS algorithm with a
theoretical analysis and extensive experimental results on convolutional networks. Several interesting future works
remain, including applying the boolean function scheme to the other neural network architectures such as recurrent
neural network, generative adversarial network, and transformers. Moreover, extending the boolean function idea to
the neural network compression scheme (which attempts to prune the weights) by finding the appropriate binary mask
which Hadamard product to weights while achieving minor (or no) degrade of performance will be interesting direction
of future study.

A Appendix

A.1 Algorithms for SH and Hyperband

In this section, we include the pseudo algorithm including Successive Halving (Algorithm 4) and Hyperband (Algo-
rithm 5).
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Algorithm 4 Successive Halving (SH) from [JT16]

1: Input: Resource R, scaling factor η
2: Initialization: smax = blogη(R)c, B = (smax + 1)R
3: n = R, r = 1
4: T = sample configuration(n)
5: for i ∈ {0, . . . , smax} do
6: ni = bnη−ic
7: ri = rηi

8: L = {f(t, ri) : t ∈ T}
9: T = topk(T, L, bniη c)

10: end for
11: return Configuration with the smallest loss

Algorithm 5 HYPERBAND FROM [LJD+17]

1: Inputs: Resource R, scaling factor η
2: Initialization: smax = blogη(R)c, B = (smax + 1)R
3: for s ∈ {smax, smax − 1, . . . , 0} do
4: n = dBR

ηs

(s+1)e, r = Rη−s

5: T = sample configuration(n)
6: for i ∈ {0, . . . , s} do
7: ni = bnη−ic
8: ri = rηi

9: L = {f(t, ri) : t ∈ T}
10: T = topk(T, L, bniη c)
11: end for
12: end for
13: return Configuration with the smallest loss

A.2 Prior Works on Recovery Conditions on Compressive Sensing

There has been significant research during the last decade in proving upper bounds on the number of rows of bounded
orthonormal dictionaries (matrix A) for which A is guaranteed to satisfy the restricted isometry property with high
probability. One of the first BOS results was established by [CT06], where the authors proved an upper bound scales
as O(sd6 log6 n) for a subsampled Fourier matrix. While this result is seminal, it is only optimal up to some polylog
factors. In fact, the authors in chapter 12 of [FR17] have shown a necessary condition (lower bound) on the number of
rows of BOS which scales asO(sd log n). In an attempt to achieve to this lower bound, the result in [CT06] was further
improved by [RV08] to O(sd log2 s log(sd log n) log n). Motivated by this result, [CGV13] has even reduced the gap
further by proving an upper bound on the number of rows as O(sd log3 s log n). The best known available upper bound
on the number of rows appears to be O(sd2 log s log2 n); however with worse dependency on the constant δ, i.e., δ−4

(please see [Bou14]). To the best of our knowledge, the best known result with mild dependency on δ (i.e., δ−2) is due
to [HR17], and is given by O(sd log2 s log n). We have used this result for proving Theorem 6.2.

A.3 Training Details on other Datasets

A.3.1 CIFAR-100

This dataset is extended version of CIFAR-10 with 100 classes containing 600 images each. Similar to CIFAR-
10, CIFAR100 consists of 60,000 color images which splits into 50,000 training images and 10,000 test images.
Following [LSY18], we train the architecture with 20 stacked cells equivalent to CIFAR-10 setting. We train the
architecture for 600 epochs with cosine annealing learning rate where the initial value is 0.025. We use a batch size 96,
SGD optimizer with nestrov-momentum of 0.9, and auxiliary tower with weights 0.4. For the regularization technique,
we include path dropout with probability 0.2, cutout regularizer with length 16, and AutoAugment [CZM+19] for
CIFAR-100. Except AutoAugment, the training setup is identical to DARTs for CIFAR-10.
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A.3.2 Street View House Numbers (SVHN)

SVHN is a digit recognition dataset of house numbers obtained from Google Street View images. SVHN consists of
73,257 train digit images, 26,032 test digit images, and additional 531,131 images. We used both train and extra (total
604,388) images for the training the architecture. Due to the large dataset, we train the architecture for 160 epochs
(equivalent to ) and other hyperparameter setup is equivalent to CIFAR-100.

A.3.3 Fashion-MNIST

Fashion-MNIST consists of 60,000 grayscale training images and 10,000 test images with size 28 × 28, classified
in 10 classes of objects. Training hyperparameter setup of the final architecture is equivalent to CIFAR-10 without
AutoAugment [CZM+19].

We list the network architectures found from our experiments which were not included in the main section.
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Figure 7: Convolution Cell found from CoNAS (t=4)
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