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Abstract

We introduce a new, principled approach to extend gradient-based optimization to
piecewise smooth models, such as k-histograms, splines, and segmentation maps.
We derive an accurate form of the weak Jacobian of such functions and show that
it exhibits a block-sparse structure that can be computed implicitly and efficiently.
We show that using the redesigned Jacobian leads to improved performance in ap-
plications such as denoising with piecewise polynomial regression models, data-
free generative model training, and image segmentation.

1 Introduction

Differentiable programming has been proposed as a paradigm shift in algorithm design. The main
idea is to leverage gradient-based optimization to optimize the parameters of the algorithm, allowing
for end-to-end trainable systems (such as deep neural networks) to exploit structure and patterns in
data and achieve better performance [13, 12, 19, 17, 8, 3, 16, 6]. One way to leverage differen-
tial programming modules is to encode additional structural priors as “layers” in a larger machine
learning model.

In these contexts, however, the space of possible priors that can be encoded are restricted to be
differentiable (by definition), and this poses a major limitation. For example, consider applications
such as calculation of summary statistics in data streams. A popular prior for such statistics is that
they are well-approximated by piecewise constant, or piecewise- linear functions, for which there
exist fast and optimal algorithms [15].

To fully leverage differentiable programming for such problems, we would like to compute gradients
“through” these approximation algorithms. Generally, embedding such discontinuous co-domains
functions as layers in a differentiable program (such as backpropagation) requires special care. A
popular solution is to relax these non-differentiable, discrete components into continuous approx-
imations for whom gradients exist [4, 7, 18, 10, 9, 2]. However, for discrete, non-differentiable
objectives such as those encountered in piecewise regression, these approaches are not applicable.

We propose a principled approach for differentiable programming with piecewise polynomial priors.
For the forward pass, we leverage fast algorithms for computing the optimal projection of any given
input onto the space of piecewise polynomial functions. For the backward pass, we observe that
every piece (partition) in the output approximation only involves input elements from the same
piece. Using this, we derive a weak form of the Jacobian for the piecewise polynomial approximation
operator. While we focus on piecewise polynomial approximation in this paper, our approach can
be generalized to any algorithmic module with piecewise outputs with differentiable subfunctions.
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2 Differentiable Piecewise Polynomial Approximation

We introduce Differentiable Piecewise Approximation (DPA) as an approach to estimate gradients
over piecewise polynomial function approximators. Our main goal will be to estimate an analyti-
cal form of the (weak) Jacobian of piecewise polynomial approximation, enabling us to use such
function approximators within backward passes in general differentiable programs.

First, we set up some preliminaries.

Def. 1 (Piecewise polynomials). A function h : Rn → Rn is said to be k-piecewise polynomial
with degree d if h(·) is the sum of sub-functions h =

∑k
i=1 hBi

(·), where ΠB = {B1, . . . ,Bk}
is a partition of [n], hBi

is a degree d polynomial if there exists k corresponding parameters
α1, . . . , αk ∈ Rn, and a fixed, known j such that for all index vector t = (t1, t2, . . . , tn) ∈ Rn

and associated vector vj = (1, tj , t
2
j , . . . , t

d
j ), [hBi

]j = 〈αi,vj〉 if tj ∈ Bi. We denote Fd as the
family of all such piecewise polynomial functions h.

Forward pass: A key component of our approach is the orthogonal projection onto the nonlinear
manifold (specifically, the union-of-subspaces) defined by Fk

d . If h(·) is the best-fit k-polynomial
approximation for x ∈ Rn, we can find h(·) (as parameterized by Bi) by solving the optimization
problem:

ĥ(x) = arg min
h

1

2
‖x− h‖22 s.t. h ∈ Fk

d

Despite the fact that this is a non-convex operation, such an orthogonal projection can be computed
in polynomial time using a few different techniques (including dynamic programming; we describe
details in specific cases below). This forms the forward pass of our DPA “layer”.

Backward pass: We now turn to the backward pass. To calculate the Jacobian of h(x) with respect
to x, there are two properties of such projection functions that we leverage: (1) h(·) induces a
partition of x, that is, each element of x corresponds to a single piece, hBi

(x), and (2) the sub-
function in each partition is continuous and differentiable.

The first property ensures that that every element xi contributes to only a single piece in the output
h(x). Given that the sub-functions from piecewise partitioning function are smooth, we also observe
that the size of each block corresponds to the size of the partition, Bi. Using this observation, we
get the following statement (see Appendix for proofs).

Theorem 1 (Jacobian for DPA). For any piecewise polynomial function, h : Rn → Rn, that takes
as input a vector x, and outputs a piecewise approximation, h(x) with k partitions, the Jacobian
can be expressed as a block diagonal matrix, J ∈ Rn×n such that,

Jx(h(x))s,t =
∂h(x)s
∂xt

=

{
∂hBi

(x)s
∂xt

if h(x)s, xt ∈ Bi

0 if h(x)s, xt /∈ Bi

(1)

1D piecewise constant regression: First, we consider the case of piecewise regression in 1D,
where we can use any algorithm to approximate a given input vector with a fixed number of piece-
wise polynomial functions. The simplest example is that of piecewise constant regression, where
a given input vector is approximated by a set of constant segments. A k-histogram approxima-
tion algorithm searches over the collection of all partitions Π = {B1, . . .Bk} of [n] such that∑k

i=1 ‖hBi
(x) − xBi

‖ is minimized where [xBi
]j = [x]j1(j ∈ Bi). Equivalently, the algorithm

solves the following optimization problem:

min
B1,...,Bk

k∑
i=1

∑
j∈Bi

(xj −
1

|Bi|
∑
l∈Bi

xl)
2

We assume an optimal h(·) (parameterized by {Bi}) that can be obtained using many existing meth-
ods (a classical approach is by dynamic programming [14]). The running time of such approaches
is typically O(nk), which is constant for fixed k; see [1] for a more detailed treatment.
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Using Theorem 1, the Jacobian of the output k-histogram with respect to x assumes the following
form:

∂h(x)

∂xj
=

∂

∂xj

k∑
i=1

(
1

|Bi|
∑
l∈Bi

xl1Bi
) =

k∑
i=1

∂

∂xj

1

|Bi|
∑
l∈Bi

xl1Bi
=

1

|Bi|
1Bi

where 1Bi
is a vector populated with ones with the index corresponding to Bi and zeros otherwise.

Therefore, the Jacobian of h with respect to x forms the block-diagonal matrix J ∈ Rn×n:

J =

J1 · · · 0
...

. . .
...

0 · · · Jk


where all entries of Ji ∈ R|Bi|×|Bi| equal to 1/|Bi|. Note here that the sparse structure of the
Jacobian allows for fast computation, and it can be easily seen that computing the Jacobian vector
product JT ν for any input ν requires O(n) running time. As an additional benefit, the decoupling
induced by the partition enables further speed up in computation via parallelization.

Generalization to 1D piecewise polyomial fitting We derive differentiable forms of generalized
piecewise d-polynomial regression. Let h : Rn → Rn be any algorithm to compute the k-piecewise
polynomial approximation of an input vector x that outputs partitions B = {B1, . . . ,Bk}. Then, for
each partition, we are required to solve a d-degree polynomial regression. Generally, the polynomial
regression problem is simplified to linear regression by converting input data into a Vandermonde
matrix. Assume that for partition, Bi, the input indices {t1, t2, . . . , t|Bi|} are represented as a
Vandermonde matrix, VBi

.

The optimal coefficients corresponding to partition Bi is αBi
= (VT

Bi
VBi

)−1VT
Bi

xBi
which can

be computed in O(kndω) time where ω is the matrix-multiplication exponent [11].

Using Theorem 1 and the gradient for polynomial regression, the Jacobian of hBi
(x) with respect

to x forms a blockwise sparse matrix: (we defer the detailed derivation in the appendix)

∂[hBi
]j

∂xl
=

{[
VBi

(VT
Bi

VBi
)−1[VT

Bi
]j
]
l

if ` ∈ Bi

0 otherwise.
(2)

The two main takeaways here are as follows: (1) VBi
can be precomputed for all possible n − 1

partition sizes, thus allowing for fast (O(n)) computation of Jacobian-vector products; and (2) an
added flexibility is that we can independently control the degree of the polynomial used in each
of the partitions. The second advantage could be very useful for heterogeneous data as well as
considering boundary cases in data streams.

3 2D piecewise constant functions

We leverage our approach to enforce deep models to predict piecewise constant segmentation maps.
In the case of 2D images, note that we do not have a standard primitive (for piecewise constant
fitting) to serve as the forward pass. Instead, we leverage connected-component algorithms (such
as Hoshen-Kopelman, or other, techniques [21]) to produce a partition, and the predicted output is
a piecewise constant image with values representing the mean of input pixels in the corresponding
piece. For the backward pass, we use a tensor generalization of the block Jacobian where each
partition is now represented as a channel which is only non-zero in the positions corresponding to the
channel. Formally, if the image x ∈ Rn is represented as the union of k partitions, h(x) =

⋃k
i=1 Bi,

the Jacobian, J(x) = ∂h(x)/∂x ∈ Rn×n and,

(J)ij =

{
1/|Bk| if h(x)i ∈ Bk,

0 otherwise.
(3)

Note that Bi here no longer correspond to single blocks in the Jacobian. Here, they will reflect the
positions of pixels associated with the various components. However, the Jacobian is still sparsely
structured, enabling fast vector operations.
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Noisy Input Ground DAE DAEreg

Ground Mbaseline Mconn Mreg

Figure 1: Denoising/Segmentation results The first row corresponds to denoising of 1D piecewise
constnat signals. We observe that training DAE with a regularizer with piecewise layer denoises the
perturbed input signals better than vanilla DAE. The second row corresponds to segmentation results
on Weizmann horse dataset. The two models, Mbaseline and Mconn were trained with and without the
differentiable connected component layer respectively. Mreg minimizes the difference between the
network output and its piecewise approximation along with the standard segmentation error. Note
that Mconn and Mreg generate better segmentation masks with fewer holes. Also note the cleaner
edges compared to the standard segmentation results. Additional figures are in the Appendix.
Table 1: Quantitative segmentation performance: Jaccard scores for the baseline and the con-
nected component models. Predictions are thresholded at 0.25 (calculated on a validation set).
Models trained with our DPA layer achieve higher scores.

Model Mbaseline Mconn MReg

Jaccard scores 128× 128 0.4986 ± 0.01 0.4810 ± 0.004 0.4991 ± 0.009
256× 256 0.5056 ± 0.006 0.4973 ± 0.008 0.4998 ± 0.006

4 Experiments

1D signal denoising: We train a structured denoising autoencoder (DAE) to denoise and reconstruct
synthetic 1D signals, using our approach to enforce piecewise smooth structures. Let f be a DAE,
h be a histogram layer, x and y be noisy input and clean signal respectively. We compare denoising
performance in two settings: (1) vanilla DAE where the loss is defined as 1

2‖f(x)r − y‖22 (DAE)
and (2) a DAE along with a piecewise constant layer with additional MSE loss 1

2‖f(x)−h(f(x))‖22
(DAEreg). We train the DAE with the synthetic dataset with piecewise constant/linear priors with
additive Gaussian noise. Figure 1 compares the denoised inputs between DAE and DAEreg. We
observe that DAEreg further smooths the denoised input compare to the vanilla version.

Image segmentation: We use a similar setup as in [10] with a three-layer fully convolutional neural
network; however, we use the mean-squared error for training instead of cross-entropy. We analyze
the efficacy of our approach in two settings: (1) adding a piecewise constant approximation layer as
the final layer of our network (Mconn), and (2) using the piecewise layer alongside the actual output
as a regularizer (Mreg). We compare these with the baseline model without the piecewise constant
layer.

We train the three models for two image sizes on the Weizmann horse dataset [5] using mean-
squared error between the ground truth and the predicted segmentation map. For a fair comparison,
we use the same base architecture and hyper-parameters for all models (see Appendix for details).
Our piecewise approximation layer provides more consistent segmentation maps with fewer holes
for both Mconn and Mreg. (see Figure 1).
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A Proofs and Derivations

Proof for Theorem 1

Proof. The proof follows similar arguments as in Proposition 4 from [4].

Let Πh = {B1,B2, · · · ,Bk} be k partitions induced by some h : Rn → Rn for some input, xi and
hBj be the sub-function associated with partition Bj . Then, each element, xi uniquely belongs to
some partition Bs.

Now,

∂h(x)

∂xi
=
∂
∑k

j=1 1(xi ∈ Bj)hBj
(x)

∂xi

=

{
∂hBs (x)

∂xi
if xi ∈ Bs

0 otherwise

Note that this is a block-diagonal matrix with each block being |Bj | × |Bj |, giving us the required
statement.

Derivation for equation 2

Let h : Rn → Rn be any algorithm to compute the k-piecewise polynomial approximation of an
input vector x that outputs partitions B = {B1, . . . ,Bk}. Assume that for partition, Bi, the input
indices {t1, t2, . . . , t|Bi|} are represented as a Vandermonde matrix, VBi .

VBi
=


1 t1 t21 · · · td1
1 t2 t22 · · · td2
...

...
...

. . .
...

1 t|Bi| t2|Bi| · · · td|Bi|

 .
It can be shown that the optimal polynomial coefficients have the following closed form:

αBi = (VT
Bi

VBi)
−1VT

Bi
xBi ,

and can be computed in O(kndω) time where ω is the matrix-multiplication exponent [11]. Then
using Theorem 1 and the gradient for polynomial regression, the Jacobian of hBi

(x) with respect to
x forms a blockwise sparse matrix:

∂[hBi
]j

∂xl
=

∂

∂xl

(
〈αBi

, [VT
Bi

]j〉
)

=
∂

∂xl

(
〈(VT

Bi
VBi

)−1VT
Bi

xBi
, [VT

Bi
]j〉
)

=
∂

∂xl
[VT

Bi
]Tj (VT

Bi
VBi)

−1VT
Bi

xBi

=

{[
VBi(V

T
Bi

VBi)
−1[VT

Bi
]j
]
l

if ` ∈ Bi

0 otherwise.

B 1D Piecewise Linear Regression.

While piecewise constant regression has significant applications, we require more flexible models
for more complex data, such as streaming sensor data or stock prices.

A popular refinement in such cases is piecewise linearity. The setup is similar as described above,
and the goal is to partition a 1D function into disjoint intervals, except that for each interval, we solve
the standard linear regression problem by minimizing the `2 error. Note that as before, our approach
assumes that we have access to an oracle that returns the optimal piecewise linear approximation
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h(x) for any input x. Let Π = {B1, . . .Bk} be the collection of partitions that minimizes the
objective function:

min
B1,...,Bk

k∑
i=1

∑
j∈Bi

(xj − αi − βitj)2

where t = [0, 1, . . . , |Bi| − 1]T indexes elements within each piece of the partition.

For a certain partition Bi, the optimal linear regression coefficients αi and βi corresponding to Bi

can be computed in closed form (we omit a detailed derivation since it is classical):

αi =

∑
j∈Bi

xj − βi
∑

j∈Bi
tj

|Bi|
, βi =

|Bi|
∑

j∈Bi
xjtj − (

∑
j∈Bi

xj)(
∑

j∈Bi
tj)

|Bi|
∑

j∈Bi
t2j − (

∑
j∈Bi

tj)2
.

One can again show [14] that the partitions (along with the optimal coefficients) can be computed in
O(nk) running time.

To derive the Jacobian of h(x) with respect to xj , we again leverage Theorem 1. Since the partitions
are decoupled, the Jacobian assumes the following form:

∂hBi

∂xj
=

∂

∂xj
(αi1Bi + βitBi)

=
1

|Bi|

(
1−

∑
l∈Bi

tl ·
|Bi|tj −

∑
l∈Bi

tl

|Bi

∑
l∈Bi

t2l − (
∑

l∈Bi
tl)2

)
· 1Bi +

|Bi|tj −
∑

l∈Bi
tl

|Bi|
∑

l∈Bi
t2l − (

∑
l∈Bi

tl)2
· tBi

=
1

|Bi|
1Bi +

|Bi|tj −
∑

l∈Bi
tl

|Bi|
∑

l∈Bi
t2l − (

∑
l∈Bi

tl)2
(
tBi −

∑
l∈Bi

tl

|Bi|
1Bi

)
.

Notice that our Jacobian formulation itself only depends on the size of a partition and is independent
of the values of the specific elements of x. This allows for the pre-computation of the sub-matrices
for various-block sizes. In practice, the Jacobian vector-product therefore, can be calculated inO(n)
running time and can be further sped up using parallel computing2.

C Experimental Details

C.1 Denoising

Dataset We generate the synthetic datasets with a prior of piecewise constant/linear with additive
Gaussian noise. The length of each data are length 50 and we add Gaussian noise with standard
deviations 3e−2 and 2e−2 for piecewise constant and piecewise linear data respectively. We create
1000 data containing perturbed signals and ground signals for the training and 100 for the testing.

Architecture We use the following model architecture for the vanilla DAE and DAE with piece-
wise constant/linear regularizer.

self.encoder = nn.Sequential(
nn.Linear(50, 30),
nn.ReLU(),
nn.Linear(30, 10),
nn.ReLU(),

)
self.decoder = nn.Sequential(

2In both the piecewise constant and linear cases above, the Jacobian ostensibly appears to be constant
irrespective of the input. However, this is not true since the partition depends on x and is calculated during the
forward pass.
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nn.Linear(10, 30),
nn.ReLU(),
nn.Linear(30, 50),
nn.Sigmoid()

)

We train the DAEs using mean squared error between the output and piecewise approximation of
the input. For the regulariser, we compute the MSE loss between the vanilla DAE output and the
DPA layer that generates a piecewise approximation of the input. We observe that the MSE loss
of vanilla DAE and DAE with regularizer in piecewise constant/linear dataset are almost equivalent
(Figure 2). However, the DAE with regularizer better enforces piecewise priors as seen in Figure 1.
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Figure 2: Test loss comparison between vanilla DAE and DAE with regularizer. Both methods
converge to nearly equal losses. However, regularized DAE better enforces the piecewise prior in
terms of smoothness (fewer jagged or curved lines).

C.2 Segmentation

Dataset Similar to [10], we use the Weizmann horse dataset for analysing the effect of DPA. The
dataset consists of 378 images of single horses with varied backgrounds, and their corresponding
ground truth. We divide the dataset into 80:10:10 ratio for training, validation and test respectively.
Further, each image is normalized to a [0, 1] domain by dividing it by 256.

Architecture and Training. We use the following model architecture for training our segmenta-
tion networks.

self.layers = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 1, 3, padding=1),
nn.Sigmoid()

)

For Mconn, the DPA layer is appended after the sigmoid function. For the Mreg model, we pass
the output of the above model through the DPA layer and minimize the sum of the MSE losses
with respect to the ground truth, and the piecewise constant version of the output respectively. For
the DPA layer, we use the measure.label function from Sci-Kit Image [20] to get the connected
components. Since the function only works with integer valued images, we quantize the [0, 1] float-
valued output to a [0, 10] integer valued image. Increasing the number of quantization bins improves
results but also slows down the forward pass. We pick 10 for a good tradeoff between speed and
accuracy.

For optimization, we use an ADAM optimizer with a learning rate of 3e−5 and a weight decay of
1e−4. All models are trained for 10, 000 epochs in order to ensure a fair comparison.
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D Additional results

Orig. Gnd. Mbaseline Mconn Mreg
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Ground Noisy Input Vanilla DAE DAEreg

Figure 3: DAE on piecewise constant prior signals. Given perturbed signal (2nd column), each
row demonstrates the visual comparison of denoised output between the vanilla DAE (3rd column)
and DAEreg (4th column).
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Ground Noisy Input Vanilla DAE DAEreg

Figure 4: DAE on piecewise linear prior signals. Given perturbed signal (2nd column), each row
demonstrates the visual comparison of denoised outputs between the vanilla DAE (3rd column) and
DAEreg (4th column).
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