
Appendix
Notation. We represent vectors in lowercase boldface, v
whereas matrices are uppercase boldface, V. Given an im-
age, U, we represent the spatial derivative with respect to
axis, x as Ux. Additionally, the gradient of a scalar, L with
respect to a vector, a is represented as ∇aL. I represents
identity matrix.

A Detailed Related Work
Generative Adversarial Networks. GANs (Goodfellow et
al. 2014) are a popular approach for modelling real world
data distributions. The standard adversarial training ap-
proach involves optimizing a mini-max game between a
generator and a discriminator defined by an approximate
Jensen-Shannon divergence. This necessarily leads to unsta-
ble training and requires careful tuning of relevant hyperpa-
rameters. Mao et al.solve the problem of vanishing gradients
by optimizing the discriminator with least squares instead of
cross-entropy. Arjovsky et al. (Arjovsky, Chintala, and Bot-
tou 2017) and Gulrajani et al. (Gulrajani et al. 2017) propose
a more stable version of GAN by modifying the discrimina-
tor loss to estimate the Wasserstein-1 distance between the
data distribution and the generator output. A major disad-
vantage for such models is that the inability to control the
generator output in any way. Zhao et al. (Zhao et al. 2018)
study the generalization in GANs.

Conditional GANs (Mirza and Osindero 2014) provide a
solution by conditioning the generator on categorical labels
so as to control the class of outputs that are generated. Chen
et al. (Chen et al. 2016) extend this to allow control over
specific semantic parameters such as stroke width in the case
of handwritten digits.

Such generative models therefore offer a mechanism to
accurately represent complex data spaces without knowing
the entire topology. Consequently, GANs are often used as
representations of solution spaces to complex physical and
dynamical systems.

Invariance in generative models. The problem of train-
ing a generative model to generate samples from a specific
distribution is often solved through the use of data. This ap-
proach is extremely useful when the data can not be modeled
mathematically. However, for many applications, there ex-
ist at least partial mathematical definitions for training data.
These mathematical definitions act in place of data, acting
as constraints to define the support of the generator distribu-
tion.

Stinis et al. (Stinis et al. 2018) employ a noisy data train-
ing approach with mathematical constraints in order to in-
terpolate and extrapolate on the generator distribution. Con-
trary to their approach of weakening the discriminator train-
ing with noisy inputs, we use an alternating minimization
scheme to force the discriminator to respect the invariances.
Jiang et al.(Jiang et al. 2019) use segmentation masks as
constraints to enforce structural conditions to generate face
images. Svyatoslav (Korneev et al. 2018), on the other hand,
enforce a PDE as a constraint by using a binary neural net-
work as a PDE solver using decision processes. Their ap-
proach is restricted to the special case of generating binary

images, whereas our algorithm is more general and can en-
force any continuous and differentiable invariance.

Microstructure generation. An entire sub-field in com-
putational material science is devoted to the development
of methods for the simulation of microstructures (Ganap-
athysubramanian and Zabaras 2008; 2007; Roberts 1997)
and subsequent quantification (Ganapathysubramanian and
Zabaras 2008; 2007). Here, microstructure realizations are
synthesized that satisfy certain target statistical properties
of the material distribution. Several strategies were de-
veloped for microstructure generation using both analyt-
ical approaches and optimization approaches. Examples
of such methods include Gaussian random fields (Roberts
1997), optimization-based methods (Yeong and Torquato
1998), multi-point statistics (Feng et al. 2018), and layer-by-
layer reconstruction (Tahmasebi, Hezarkhani, and Sahimi
2012).These statistical properties could be scalars (such
like total volume fraction of a material) or more com-
plex functions (like 2-point correlations and other material
statistics) (Torquato 2013). Recent advances also involve
the generative modeling techniques (Sanchez-Lengeling and
Aspuru-Guzik 2018), however, those largely rely on the
availability of training datasets.

For our experiments in generating microstructures, we use
the Binary 2D microstructures dataset (Pokuri et al. 2019)
based on Cahn-Hilliard equation (Cahn and Hilliard 1958)
for training and testing.

B Microstructures Generation using InvNet:
Additional Details

Motivation
An overarching theme of materials research is the de-
sign of material distributions (also called microstructure)
so that the ensuing material exhibits tailored properties. In
microstructure-sensitive design, quantifying the effect of mi-
crostructure features on performance is critical for the effi-
cient design of application-tailored devices. Microstructures
are represented as binary images indicating the arrangement
of constituent materials within the mixture. The statistical
properties of such microstructural images are useful in pre-
dicting the physical and chemical properties of the mixture
material - thus aiding into faster material discovery. To ob-
tain a material with desired property, a microstructure hav-
ing the corresponding statistical property need to be gener-
ated. We feed in such statistical properties as the invariances
in our framework, and come up with a generative model that
can sample from the set of all microstructures adhering to
desired statistical properties. We propose both a data-driven
and data-free generative network for synthetic microstruc-
tures adhering the invariances for the training.

Preliminaries
In the context of microstructure generation problem, we
consider the underlying material to be a two-phase homo-
geneous, isotropic material. Our setup for statistical char-
acterization of microstructure follows with Torquato et
al. (Torquato 2013). Consider an instance of the two-phase



homogeneous isotropic material within d-dimensional Eu-
clidean space Rd (where d ∈ {2, 3}). A phase function φ(·)
is used to characterize this two-phase system, defined as:

φ(1)(r) =

�
1, r ∈ V1,

0, r ∈ V2,
(10)

where V1 ∈ Rd is the region occupied by phase 1 and V2 ∈
Rd is the region occupied by phase 2.

Given this microstructure defined by the phase function,
φ, statistical characteristics can be evaluated. These include
the n−moments, (n-point correlation functions) for n =
1, 2, 3, .... For homogeneous and isotropic media, These de-
pend neither on the absolute positions of n−points, nor on
the rotation of these spatial co-ordinates; instead, they de-
pend only on relative displacements. The 1st-moment, p1,
commonly known as volume fraction, is constant through-
out the material. The volume fraction of phase 1, p(1)1 , is
defined as:

p
(1)
1 = Erφ

(1)(r).

The 2nd−moment is a function of r and is defined as:

p
(1)
2 (r12) = Er1,r2

�
φ(1)(r1)φ

(1)(r2)
�
.

The 2nd moment (known as 2−point correlation as well)
is one of the most important statistical descriptors of mi-
crostructures. An alternate interpretation of 2nd moment is
the probability that two randomly chosen points r1 and r2 a
certain distance apart both share the same phase.

Henceforth we omit the superscript representing the phase
and subscripts representing the spatial points for simplic-
ity, and refer to volume fraction as p1, and 2-point corre-
lation as p2. It can be shown that p2(r = 0) = p1 and
limr→∞ p2(r) = p21.

In the training step, we use the above statistical properties
as invariances for training the InvNet. The invariance loss
LI(·) can be defined as l2− loss:

LI = λ1�fp1(Gθ(z,p
∗
2))−p∗1�22+λ2�fp2(Gθ(z,p

∗
2))−p∗

2�22
(11)

where fpi represent the functional forms of the moments;
p∗1,p

∗
2 are target values of the moments. The coefficients, λi

are appropriately chosen for the tasks to be solved.
Dataset. We use the Binary 2D microstructures
dataset (Pokuri et al. 2019) based on Cahn-Hilliard
equation (Cahn and Hilliard 1958) for training and testing.
The dataset contains ∼ 34k binary microstructures of size
101 × 101 obtained by sampling the evolving solutions
across time. The dataset contains images with diverse
values of 1st and 2nd moments, and implicitly exhibit
higher moments too. For training, we resize the images to
64× 64.

C Additional Results.
Comparison with Stinis et al.. We use ideas from Stinis et
al. (ECF) and modify a simple WGAN-Gp to enforce the
1st moment constraint. This involves two steps: (1) Mod-
ify the discriminator architecture to take as input the data
and the corresponding residual of the p1 invariance loss, (2)

Add noise to the real data residual to ensure stability. Since
teh authors have not shared the code, we implement the ap-
proach for comparison.

We observe that for our application; the ECF algorithm
fails to converge. In fact, the discriminator and the generator
loss explode to very high values. We hypothesize that this
may be a consequence of the model failing to model the joint
distribution due to large residual values in teh intiial steps.

Generating shapes with conditional GANs. For compar-
ison, we train a cGAN with our dataset of circles. As a mod-
ification of the original vanilla cGAN, we feed the centroids
and radii of both circles from real data sample instead of the
labels. Additionally, we train with the WGAN-GP objective
for smoother training.

The generator takes the same input as the InvNet by
[z, r]T while the discrimator is fed the generated or true im-
ages; stacked with r; a vector consisting of the target cen-
troids and radii. We observe that cGAN completely fails to
learn the distribution of the dataset as shown in Fig 9. Ad-
ditionally, Fig. 1 shows that cGAN fails to generate images
obeying the target invariance and in fact learns the training
data distribution instead.

Figure 9: Training results from cGAN. The discriminator loss
shows the failure of the model for the toy dataset. Apart from
the geometrical invariance, we also observe from generated images
that cGAN model collapse t with two circles dataset.

Comparison with AC-GANs. Similar to the experiment
above, we train an AC-GAN for the same task. For fair com-
parison, we use the WGAN objective and the softmax gen-
erator with equal number of parameters as InvNet. Addition-
ally, as per the original AC-GAN paper (Odena, Olah, and
Shlens 2017), we modify the discriminator architecture to
take in the true or generated data along with the encoded tar-
get vector. The AC-GAN is trained with ADAM (learning
rate=0.001) for ∼ 23k.

While the AC-GAN successfully learns the input data
distribution, it fails to capture the association between the
input target properties and those of the generated images.
Additionally, the convergence of the AC-GAN model is far
slower than that of InvNet.



Figure 10: Comparison of the discriminator loss curves for AC-
GAN and InvNet. Note the smoother training curve for InvNet.



Figure 11: Additional results for the toy dataset with two circles. Each row corresponds to the specific geometrical constraints.



Figure 12: Additional results for the toy dataset with a circle and a square. Each row corresponds to the specific geometrical constraints.



Figure 13: Additional results for binary microstructure generation using the volume fraction control parameter. Each row
corresponds to a specific volume fraction (p1) value ranging from 0.3 to 0.8.



Figure 14: Results for InvNet trained to generate binary microstructures given target p2 curves. The plot displayes the target and the mean
curve for 64 generated images. The corresponding images have been generated for the target p2 on the left for varying latent random latent
vector, z.



Figure 15: Additional results for polycrystalline microstructure generation using the volume fraction control parameter. Each row corre-
sponds to a specific vol. frac. value of a fourth orientation ranging from 0.15 to 0.65. Note that the range of the fourth orientation from
the dataset is in 0.18 to 0.50. Last three rows (with volume fraction (p1) corresponding to 0.55, 0.60, 0.65) generated from the interpolated
distribution from its data distribution.
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Figure 16: Grain distribution for generated polycrystalline data. The plots represent the mean volume fractions of 100 images for each
required distribution. The horizontal dashed lines denote the target volume fraction for the orientation. Observe that InvNet is successful at
generating polycrystalline images for a large variety of grain distributions. Also note that several of the target distributions are not present in
the training dataset.
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Figure 17: Performance of InvNet in respecting target invariances. The bar plots show the centroids (cix, ciy) and radii,ri for images generated
by InvNet for the two circle task. Note that InvNet successfully generates images that respect the required target invariance value (represented
by the dashed horizontal line) with very low error.


