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ABSTRACT

Neural Architecture Search remains a very challenging meta-learning problem.
Several recent techniques based on parameter-sharing idea have focused on reduc-
ing the NAS running time by leveraging proxy models, leading to architectures
with competitive performance compared to those with hand-crafted designs. In
this paper, we propose an iterative technique for NAS, inspired by algorithms for
learning low-degree sparse Boolean functions. We validate our approach on the
DARTs search space (Liu et al., 2018b) and NAS-Bench-201 (Yang et al., 2020).
In addition, we provide theoretical analysis via upper bounds on the number of
validation error measurements needed for reliable learning, and include ablation
studies to further in-depth understanding of our technique.

1 INTRODUCTION

The choice of a suitable neural network architecture for complex prediction tasks such as image
classification often requires substantial trial-and-error. Recently, there has been a growing interest
to automatically select the architecture of neural networks that can achieve competitive (or better)
results over hand-designed architectures. Neural architecture search (NAS) tries to automate this
hand-design process by constructing competitive architectures with as small computational budgets as
possible (Zoph et al., 2018; Liu et al., 2018a;b; Xie et al., 2018; Bender et al., 2018; Li & Talwalkar,
2019).

In a departure from traditional methods, we approach the NAS problem via the lens of compressive
sensing. The field of compressive sensing (or sparse recovery), introduced by the seminal works
of Candes et al. (2006); Donoho et al. (2006), has received significant attention in ML community
over the last decade and has influenced advances in nonlinear and combinatorial optimization. Here,
we develop a new NAS method called CoNAS (Compressive sensing-based Neural Architecture
Search), which merges ideas from sparse recovery with the so-called “one-shot” architecture search
methods (Bender et al., 2018; Li & Talwalkar, 2019). Our contribution is twofold. First, CoNAS uses
a new search space that permits exploration of a large(r) number of diverse candidate architectures.
Second, it utilizes a new search strategy that borrows ideas from the recovery of Boolean functions
from their (sparse) Fourier expansions. We show how a combination of these two ideas leads to
improved NAS performance.

2 CONAS: A NEW NAS APPROACH

Overview. Our proposed algorithm, Compressive sensing-based Neural Architecture Search
(CoNAS), combines ideas from learning a sparse graph (Boolean Fourier analysis) and one-shot NAS.
As we mentioned above, CoNAS consists of two components: a newly defined search space, and a
more practical search strategy. Before discussing these two parts, we review some basics.

Fourier analysis of Boolean functions. We follow the treatment given in O’Donnell (2014). A
real-valued Boolean function is one that maps n-bit binary vectors (i.e., vertices of a hypercube) to
a real number: f : {−1, 1}n → R. Such functions can be represented in a basis comprising real
multilinear polynomials called the Fourier basis, defined as follows. (We denote the vectors with
bold letters. Also, [n] denotes the set {1, 2 . . . , n}. Hence, the power set of [n] is denoted by 2[n].
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Definition 2.1. For S ⊆ [n], define the parity function χS : {−1, 1}n → {−1, 1} such that
χS(α) =

∏
i∈S αi. Then, the Fourier basis is the set of all 2n parity functions {χS}.

The key fact is that the basis of parity functions forms an K-bounded orthonormal system (BOS)
with K = 1, therefore satisfying two properties:

〈χS , χT 〉 =
{
1, if S = T

0, if S 6= T
and sup

α∈{−1,1}n
|χS(α)| ≤ 1 for all S ⊆ [n], (2.1)

Due to the orthonormality, any Boolean function f has a unique Fourier representation, given by
f(α) =

∑
S⊆[n] f̂(S)χS(α), with Fourier coefficients f̂(S) = Eα∈{−1,1}n [f(α)χS(α)] where

expectation is taken with respect to the uniform distribution over the vertices of a hypercube.

Algorithm 1 Pseudocode: CoNAS

Inputs: Number of measurements m, number of coeffi-
cients s, lasso parameter λ
Train one-shot model (f ) with parameter sharing (RSPS)
while not enough measurements (k < m) do

Randomly sample a sub-architecture binary encoded
vector αk

Collect test loss, y = {L(f(α1)), . . . , L(f(αk))}
k ← k + 1

end while
Construct graph sampling matrix A from {α1, . . . , αm}
Solve u∗ = argminu ‖y −Au‖22 + λ‖u‖1.
Approximate g ≈ f with s absolutely largest coefficients
from u∗

Compute minimizer z = argminα g(α) via brute force.
return Constructed cell from z

A modeling assumption is that the
Fourier spectrum of the function is
concentrated on monomials of small
degree (≤ d). This corresponds to the
case where f is a decision tree (Hazan
et al., 2017), and allows us to simplify
the Fourier expansion by limiting its
support. Let Pd ⊆ 2[n] be a fixed
collection of Fourier basis such that
Pd := {χS : S ⊆ 2[n], |S| ≤ d}
Then Pd induces a function space
consisting of all functions of order
d or less, denoted by HPd := {f :

Supp[f̂ ] ⊆ Pd}. For example, P2 al-
lows us to express the function f with
at most

∑d
l=0

(
n
l

)
≡ O(n2) Fourier

coefficients.

Lastly, if we have a prior knowledge of some set of bits J , we use an operation called restriction.

Definition 2.2. Let f : {−1, 1}n → R, (J, J) be a partition of [n], and z ∈ {−1, 1}J . The
restriction of f to J using z denoted by fJ|z : {−1, 1}J → R is the subfunction of f given by fixing
the coordinates in J to the bit values z.

We now discuss two main components of CoNAS.

1-Search Space. Following the approach of DARTs (Liu et al., 2018b), we define a directed acyclic
graph (DAG) with all predecessor nodes are connected to every intermediate node with all possible
operations. We represent any sub-graph of the DAG using a binary string α called the architecture
encoder. Its length is the total number of edges in the DAG, excluding the edges connect to the output
node. A 1 (resp. −1) in α indicates an active (resp. inactive) edge.

Figure 1 gives an example of how the architecture encoder α samples the sub-architecture of the
fully-connected model in the case of a convolutional neural network. The goal of CoNAS is to
find the “best” encoder α∗, which is ”close enough” to the best achievable validation accuracy by
constructing the final model with α∗ encoded sub-graph.

2-Search Strategy. We propose a compressive measuring strategy to approximate the one-shot
model with a Fourier-sparse Boolean function. Let f : {−1, 1}n → R map the sub-graph of the
one-shot pre-trained model encoded by α to its validation performance. We collect a small number
of function evaluations of f and reconstruct the Fourier-sparse function g ≈ f via a sparse recovery
algorithm with randomly sampled measurements (test loss). Then, we solve argminα g(α) by
exhausting enumeration over all coordinates, supports of the Boolean function g. We obtain a cell
to construct the final architecture by activating the edges such that α∗i = 1. If the solution does
not return enough edges, restricting the hypercube allows the iterative process to find more edges.
From Definition 2.2, we restrict the approximate function g by fixing bit values found in the previous
solution and repeat the sparse recovery by randomly sampling sub-graph in the remaining edges.
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Figure 1: Diagram inspired by Bender et al. (2018). The example architecture encoder α samples
a sub-architecture for N = 5 nodes (two intermediate nodes) with five different operations. Each
component in α maps to the edges one-to-one in all Choice blocks in a cell. Since the CNN search
space finds both normal cell and reduce cell, the length of α is equivalent to (2 + 3) · 5 · 2 = 50.

Full Algorithm. We now describe CoNAS in detail, with pseudocode provided in Algorithm 1.

We first train a parameter-shared one-shot model (Li & Talwalkar, 2019) with standard backprop-
agation; however, we only update the weights corresponding to the randomly sampled sub-graph
edges for each minibatch. Then, we randomly sample sub-graphs by generating architecture encoder
strings α ∈ {−1, 1}n from some distribution. (e.g., a Bernoulli(p) distribution for each bit of α
independently).

In the second stage, we collect m measurements of randomly sampled sub-architecture performance
denoted by y = (L(f(α1)), L(f(α2)), . . . , L(f(αm)))T . Next, we construct the graph-sampling
matrix A ∈ {−1, 1}m×|Pd| with entries

Al,k = χSk(αl), l ∈ [m], k ∈ [|Pd|], S ⊆ [n], |S| ≤ d, (2.2)

where d is the maximum degree of monomials in the Fourier expansion, and Sk is the index set
corresponding to the kth Fourier basis. We solve the familiar Lasso problem (Tibshirani, 1996):

u∗ = argmin
u∈R|Pd|

‖y −Au‖22 + λ‖u‖1, (2.3)

to (approximately) recover the global optimizer u∗, the vector contains the Fourier coefficients
corresponding to Pd. We define an approximate function g ≈ f with Fourier coefficients with the
top-s (absolutely) largest coefficients from u∗, and solve α∗ = argminα g(α) by computing all the
possible points (brute force) in the subcube defined by the support of g (this computation is feasible
if s is small). Finally, we obtain a cell to construct the final architecture by activating the edges
corresponding to all i ∈ [n] such that α∗i = 1.

Theoretical support for CoNAS. We first note that a system of linear equations given by y =

Au with the graph-sampling matrix A ∈ {−1, 1}m×O(nd), measurements y ∈ Rm, and Fourier
coefficient vector u ∈ RO(nd) is an ill-posed problem when m� O(nd) for large n. However, if the
graph-sampling matrix satisfies Restricted Isometry Property (RIP), the sparse coefficients, u can be
uniquely recovered.

Definition 2.3. A matrix A ∈ Rm×O(nd) satisfies the restricted isometry property of order s with
some constant δ if for every s-sparse vector u ∈ RO(nd) (i.e., only s entries are non-zero) the
following holds:

(1− δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22.

To the best of our knowledge, the best known result with mild dependency on δ (i.e., δ−2) is due
to Haviv & Regev (2017), which we can apply for our setup. It is easy to check that the graph-
sampling matrix A in our proposed CoNAS algorithm satisfies BOS for K = 1 (equation 2.2). We
defer the proof in Appendix A.3.

Theorem 2.4. Let the graph-sampling matrix A ∈ {−1, 1}m×O(nd) be constructed by taking m
rows (random sampling points) uniformly and independently from the rows of a square matrix M ∈
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Table 1: Comparison with existing NAS methods on CIFAR-10 DARTs search space
Method Test Error (%) Params (M) Multi-Add (M) Search (GPU day)
NASNet-A 2.65 3.3 - 2000
GDAS 2.82 2.5 - 0.17
SNAS 2.85± 0.02 2.8 - 1.5
ENAS 2.89 4.6 - 0.45
DARTs 2.76± 0.09 3.3 548 4
Random Search 3.29± 0.15 3.1 - 4
RSPS 2.71|2.85± 0.08 3.7 634 2.7
CoNAS (1) 2.59|2.67± 0.06 3.2 450 0.35
CoNAS (2) 2.73|2.85± 0.08 2.7 430 0.35

Table 2: Comparison with existing NAS methods on NAS-Bench-201

Method Search CIFAR-10 CIFAR-100 ImageNet-16-120
(seconds) validation test validation test validation test

DARTs 35781.80 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 31609.80 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
ENAS 14058.80 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
RSPS 8007.13 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09

CoNAS 8222.80 88.40±2.79 91.22±3.08 65.82±5.72 66.39±5.51 39.51±6.95 38.82±7.01

{−1, 1}O(nd)×O(nd). Then the normalized matrix A with m = O(log2( 1
δ )δ
−2s log2( sδ )d log(n))

with probability at least 1 − 2−Ω(d logn log( sδ )) satisfies the restricted isometry property of order s
with constant δ; as a result, every s-sparse vector u ∈ RO(nd) can be recovered from the sample yi’s
y = Au =

(∑|O(nd)|
j=1 ujAi,j

)m
i=1

by solving the LASSO problem in (equation 2.3).

In essence, Theorem 2.4 provides a successful guarantee for recovering the optimal sub-network of a
given size given a sufficient number of performance measurements.

3 EXPERIMENTS AND RESULTS

In this section, we illustrate the efficacy of our proposed approach through some experimental results.
We start by experimenting on two popular NAS benchmarks: (i) a CNN search on CIFAR-10 on
DARTs (Liu et al., 2018b) search space, (ii) a CNN search on NAS-Bench-201 (Yang et al., 2020)
search space. We compare CoNAS with the following NAS algorithms in DARTs search space:
NASNet (Zoph et al., 2018), SNAS (Xie et al., 2018), ENAS (Pham et al., 2018), DARTs (Liu et al.,
2018b), random search from Liu et al. (2018b), and RSPS (Li & Talwalkar, 2019). Our evaluation
setup for training the final architecture is the same as one reported by DARTs and NAS-Bench-201.
We defer the search/evaluation setup details and ablation studies to the section ?? in the Appendix.
The implementation of CoNAS is available from this link1.

DARTs Search Space We run CoNAS in two different settings: (1) cells from the optimization
problem (equation 2.3) and (2) the sub-graph from (1) to strictly match DARTs cell by manually
dropping some operations (up to 2 edges for each intermediate nodes). We conduct the final training
with exact hyperparameter setups used in DARTs. The average test error of our experiment uses
five random seeds. Figure 2 in the Appendix includes the cells found from CoNAS. Our approach
achieves the test error of 2.59% surpassing the RSPS, DARTs, and random search.

NAS-Bench-201 Search Space We evaluate our algorithm on NAS-Bench-201, a NAS benchmark
designed for all cell-based NAS methods. We implement our algorithm on top of the existing Random
Search with Parameter Sharing (RSPS) implementation in the NAS-Bench-201 library. We randomly
sample sub-graphs from a trained one-shot model and solve the optimization problem (equation 2.3).
If the solution picks more than one operation (an edge) between the nodes, we randomly choose an
operation uniformly from the given solution. The average test error on NAS-Bench-201 uses three
different random seeds. Table 2 compares cell-based NAS methods on NAS-Bench-201. We observe
that both approaches consistently find a better cell structure than RSPS.

1https://github.com/chomd90/CoNAS release
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A APPENDIX

A.1 SEARCH/EVALUATION PROTOCOLS AND HYPERPARAMETER SETUP

We conduct the exact equivalent evaluation training protocol of DARTs for the fair comparison. We
adopt a NAS-Bench-201 API for the NAS-Bench-201 search space, which provides all available cells’
precomputed performance, including test loss and accuracy.

Search Protocol in DARTs Search Space We train a one-shot architecture equivalent to RSPS with
a cell containing N = 7 nodes with two nodes as inputs and one node as output. We randomly
sample sub-graphs by generating architecture encoder strings α ∈ {−1, 1}n using a Bernoulli(p)
distribution for each bit of α independently (we set p = 0.5). We set the threshold for gathering
measurements (loss) to remove abnormally high loss values. We use seven operations: 3 × 3 and
5× 5 separable convolutions, 3× 3 and 5× 5 dilated convolutions, 3× 3 average pooling, 3× 3 max
pooling, and Identity. We equally divide the 50,000-sample training set into training and validation
sets, following Li & Talwalkar (2019) and Liu et al. (2018b).

Search Protocol in NAS-Bench-201 Search Space NAS-Bench-201 provides the predefined search
space with four operations (five operations including a zero operation) and four nodes. We uniformly
random sample the sub-graph from all possible cells in the search space.

Table 3 and Table 4 include the training protocol and hyperparameters used in CoNAS on DARTs
search space and NAS-Bench-201, respectively.
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CoNAS-Normal (1) CoNAS-Reduce (1)

CoNAS-Normal (2) CoNAS-Reduce (2)

Figure 2: The cell in the first (resp. second) row corresponds to the CoNAS(1) (resp. CoNAS(2))
results in Table 1. CoNAS(2) is the sub-graph of CoNAS(1) which strictly meets the requirement for
DARTs search space (only up to two edges allowed for intermediate nodes).

Table 3: DARTs search space searching hy-
perparameter set.

optimizer SGD initial LR 0.025
Nesterov Yes ending LR 0.001

momentum 0.9 LR schedule cosine
weight decay 0.0003 epoch 100

batch size 64 initial channel 16
cells # 8 cutout No
ops # 7 nodes # 7

random flip p=0.5 random crop Yes
normalization Yes threshold 1.5
measurements 3000 lasso (λ) 10.0

coefficient # (s) 12 degree (d) 2

Table 4: NAS-Bench-201 search space search-
ing hyperparameter set.

optimizer SGD initial LR 0.025
Nesterov Yes ending LR 0.001

momentum 0.9 LR schedule cosine
weight decay 0.0005 epoch 100

batch size 64 initial channel 16
cells # 5 cutout No
ops # 4 nodes # 4

random flip p=0.5 random crop Yes
normalization Yes threshold 1.8
measurements 300 lasso (λ) 5.0

coefficient # (s) 14 degree (d) 2

Evaluation Protocol in DARTs Search Space We evaluate the cell found from CoNAS with exactly
equivalent training protocol to DARTs. We use either NVIDIA Quadro RTX 8000 or NVIDIA TITAN
RTX for the final architecture training process (1 GPU training). Table 5 shows the final evaluation
protocol details. We set random seeds from 0 to 4 for the average test error on Table 1.

Table 5: DARTs search space final evaluation hyperparameter set.
optimizer SGD initial LR 0.025
Nesterov Yes ending LR 0

momentum 0.9 LR schedule cosine
weight decay 0.0003 epoch 600

batch size 96 initial channel 36
random flip p=0.5 random crop Yes

normalization Yes cutout Yes
drop-path 0.2 cutout length 16

cells # 20 aux weight 0.4
grad clip 5.0 parallel training No

A.2 NAS LITERATURE

Neural Architecture Search. Early NAS approaches used RL-based controllers (Zoph et al., 2018;
Pham et al., 2018), evolutionary algorithms (Real et al., 2019), or sequential model-based optimiza-
tion (SMBO) (Liu et al., 2018a), and showed competitive performance with manually-designed
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architectures such as deep ResNets (He et al., 2016) and DenseNets (Huang et al., 2017). However,
these approaches required substantial computational resources, running into thousands of GPU-
days. Subsequent NAS works have focused on boosting search speeds by proposing novel search
strategies, such as differentiable search technique via gradient-based optimization (Cai et al., 2019;
Liu et al., 2018b; Xie et al., 2018) and random search via sampling sub-networks from a one-shot
super-network (Bender et al., 2018; Li & Talwalkar, 2019). To the best of our knowledge, no NAS
method yet reported has explored compressive sensing techniques.

Differentiable Neural Architecture Search (DARTs). Our CoNAS approach can be viewed as
a refinement to DARTs ((Liu et al., 2018b)) which performs bilevel optimization by relaxing the
(discrete) architecture search space to a differentiable search space via softmax operations. The
choice of alternative optimization on differentiable multi-objective formulation substantially speeds
up the search by orders of magnitude while achieving competitive performance compared to previous
works (Zoph & Le, 2017; Zoph et al., 2018; Real et al., 2019; Liu et al., 2018a).

One-Shot Neural Architecture Search. Bender et al. (2018) provide an extensive experimental
analysis on one-shot architecture search based on weight-sharing. Bender et al. (2018) statistically
showed the correlation between the one-shot model (super-graph) and stand-alone model (sub-graph)
through the experiments. Li & Talwalkar (2019) proposes simplified training procedures without
stabilizing techniques (e.g., path dropout schedule on a direct acyclic graph (DAG) and ghost batch
normalization) from Bender et al. (2018). As the final performance of the discovered architecture
heavily relies on hyperparameter settings, Li & Talwalkar (2019) exactly accords hyperparameters and
data augmentation techniques to DARTs for their experiments. This combination of random search
via one-shot models with weight-sharing provides the best competitive baseline results reported in
the NAS literature. Our CoNAS approach improves upon these reported results.

Learning Sub-Networks. Stobbe & Krause (2012) propose learning sparse sub-networks from
a small number of random cuts; they also leverage ideas from compressive sensing and provide
theoretical upper bounds for successful recover. Our CoNAS approach is directly inspired from
their seminal work. However, we emphasize essential differences: while Stobbe & Krause (2012)
emphasize linear measurements, CoNAS takes a different perspective by focusing on measurements
that map sub-networks to performance, which are fundamentally nonlinear. Moreover, our theoretical
bounds use better Fourier-RIP bounds, and lead to improved results in terms of measurement
complexity.

Hyperparameter optimization. Building upon the approach of Stobbe & Krause (2012), Hazan
et al. (2017) develop a spectral approach called Harmonica for hyperparameter optimization (HPO)
by encoding hyperparameters as binary strings. CoNAS also follows the same path, albeit for NAS.
While NAS and HPO are sister meta-learning problems, we emphasize that our focus is exclusively
on NAS, while Hazan et al. (2017) exclusively focus on HPO.

Moreover, the techniques of Hazan et al. (2017) cannot be directly applied to the NAS problem. We
need to define our search space, encode our search problem in terms of Boolean variables, and propose
how to gather measurements. All these are new to our paper: in particular, CoNAS proposes gathering
measurements within tractable sampling time via top of RSPS, while Harmonica naively gathers
the approximated measurements by training the model for each randomly sampled hyperparameter
choice. Finally, Harmonica requires invocation of a baseline hyperparameter optimization method
(such as random search, successive halving (Jamieson & Talwalkar, 2016), or Hyperband (Li et al.,
2017)), which CoNAS does not require.

A.3 THEORETICAL SUPPORT FROM COMPRESSIVE SENSING

The system of linear equations y = Au with the graph-sampling matrix A ∈ {−1, 1}m×O(nd),
measurements y ∈ Rm, and Fourier coefficient vector u ∈ RO(nd) is an ill-posed problem when
m << O(nd) for large n. However the sparse coefficients u can be recovered if the graph-sampling
matrix satisfies Restricted Isometry Property from Definition 2.3.

There has been significant research during the last decade in proving upper bounds on the number
of rows of bounded orthonormal dictionaries (matrix A) for which A is guaranteed to satisfy the
restricted isometry property with high probability. One of the first BOS results was established
by Candes & Tao (2006), where the authors proved an upper bound scales as O(sd6 log6 n) for a
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subsampled Fourier matrix. While this result is seminal, it is only optimal up to some polylog factors.
In fact, the authors in chapter 12 of Foucart & Rauhut (2017) have shown a necessary condition
(lower bound) on the number of rows of BOS which scales asO(sd log n). In an attempt to achieve to
this lower bound, the result in Candes & Tao (2006) was further improved by Rudelson & Vershynin
(2008) to O(sd log2 s log(sd log n) log n). Motivated by this result, Cheraghchi et al. (2013) has
even reduced the gap further by proving an upper bound on the number of rows as O(sd log3 s log n).
The best known available upper bound on the number of rows appears to be O(sd2 log s log2 n);
however with worse dependency on the constant δ, i.e., δ−4 (please see Bourgain (2014)). To the
best of our knowledge, the best known result with mild dependency on δ (i.e., δ−2) is due to Haviv &
Regev (2017), and is given by O(sd log2 s log n). We have used this result for proving Theorem 2.4.

Theorem A.1. Let the graph-sampling matrix A ∈ {−1, 1}m×O(nd) be constructed by taking m
rows (random sampling points) uniformly and independently from the rows of a square matrix M ∈
{−1, 1}O(nd)×O(nd). Then the normalized matrix A with m = O(log2( 1

δ )δ
−2s log2( sδ )d log(n))

with probability at least 1 − 2−Ω(d logn log( sδ )) satisfies the restricted isometry property of order s
with constant δ; as a result, every s-sparse vector u ∈ RO(nd) can be recovered from the sample yi’s
y = Au =

(∑|O(nd)|
j=1 ujAi,j

)m
i=1

by LASSO (equation 2.3).

Proof. First, we note that the graph-sampling matrix A is a BOS matrix with K = 1; hence, directly
invoking Theorem 4.5 of Haviv & Regev (2016) to our setting, we can see that matrix A satisfies
RIP. Now according to Theorem 1.1 of Candes (2008), letting δ <

√
2− 1, the `1 minimization or

LASSO will recover exactly the s sparse vector u. For instance, in our experiments, we have selected
m = 3000 which is consistent with our parameters, d = 2, s = 14, n = 196.

A.4 RANKING CORRELATION OF RSPS.

Figure 3: Ranking difference between one-shot
model and actual architecture. The higher the
Kendall-tau correlation, the more each line parallel
to the x-axis.

We leverage Random Search with Parameter
Sharing (RSPS) to collect measurements quickly
for sparse recovery with the Fourier basis of
Boolean functions. We examine the corre-
lation between performance estimations from
parameter-shared models and performance from
isolated training from scratch with concatenated
cells We first randomly sample 32 cells from a
100-epoch trained one-shot model (same search
setup described in Appendix A.1) with RSPS
method on the CIFAR-10 dataset. Then we col-
lect two sets of test losses to observe ranking
correlation via Kendall tau correlation between
one-shot model and macro-skeleton trained with
160 epochs for each randomly sampled cell. We
matched the initial number of channels (16) and
depth (8) of micro skeleton (equivalent to num-
ber of cells) to the one-shot model. We ob-
served the correlation between one-shot model
and macro-skeleton is weak with Kendall tau
τ = 0.15 with the two-sided p-value 0.23. Fig-
ure 3 visually represents the rank correlation
between one-shot model prediction and actual trained model in test loss. We point out that other
factors that exist weakening the correlation, such as the same architecture training with different
seeds, affect the ranking correlation (Yang et al., 2020) and high variance of CIFAR-10 results even
with exact training protocol (Liu et al., 2018a).

A.5 STABILITY ON LASSO PARAMETERS

We check our algorithm’s stability on lasso parameter by observing the solution given exact same
measurements. Denote α∗λ=l as the architecture encoded output from CoNAS given λ = l. We
compare the hamming distance and the test error between α∗λ=1 and other λ values (λ = 0.5, 2, 5, 10).
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We train a parameter-shared one-shot network with five operations resulting the encoder length
(2 + 3 + 4 + 5) ∗ 5 ∗ 2 = 140. The average support of the solution from one sparse recovery is
15 out of the 140 length. The average hamming distance between two randomly generated binary
strings with supp(α∗) = 15 from 100, 000 samples was 27.58±1.82. Our experiment shows a stable
performance under various lasso parameters with small hamming distances regards to various λ. Also
we measure the average test error with 150 training epochs on different λ values as shown in Table 6.
For the baseline comparison, we compare CoNAS solutions with the randomly chosen architecture
with 15 operations.

Table 6: Lasso Parameter Stability Experiment.

Criteria λ = 0.5 λ = 2.0 λ = 5.0 λ = 10.0 Random

Hamming Distance 0 0 8 12 29
Test Error (%) 3.74± 0.07 3.74± 0.07 3.51± 0.06 3.62± 0.04 4.43± 0.08
Param (M) 2.3 2.3 2.6 2.6 2.7
Multiply-Add (M) 386 386 455 449 444
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