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ABSTRACT

Deep neural networks are often highly over-parameterized,
prohibiting their use in compute-limited systems. However, a
line of recent works has shown that the size of deep networks
can be considerably reduced by identifying a subset of neuron
indicators (or mask) that correspond to significant weights
prior to training. We demonstrate that a simple iterative mask
discovery method can achieve state-of-the-art compression
of very deep networks. Our algorithm represents a hybrid
approach between single-shot network pruning methods (such
as SNIP) with Lottery-Ticket type approaches. We validate our
approach on several datasets and outperform several existing
pruning approaches in both test accuracy and compression
ratio.

Index Terms— Model compression, neural network prun-
ing, sparsification

1. INTRODUCTION

Motivation. Neural networks have achieved state of the art re-
sults across several domains such as computer vision, language
processing, and reinforcement learning. This performance is
generally contingent on large, over-parameterized networks
that are trained using massive amounts of data. For example,
the current state of the art on the ImageNet classification task
uses a network with over 480 million parameters [1]. Conse-
quently, the best performing networks are prohibitive in terms
of computational and memory requirements. Therefore, com-
pressing neural networks is vital for resource-limited settings
(such as mobile devices). In this work, we present an algo-
rithm for compressing neural networks to a far higher degree
of sparsity levels than reported in the literature.
Challenges. Network pruning involves finding a smaller, more
efficient representation of a given reference neural network.
Pruning strategies include quantization [2], sparsification [3–
7], and distillation [8]. See [9] for a detailed look at several
approaches towards neural network compression.

The authors are with the Tandon School of Engineering at New York
University. The authors thank the NYU HPC team for help with the computing
infrastructure, and Anna Choromanska for useful discussions. This work was
supported in part by NSF grants CCF-2005804 and CCF-1815101, and DOE
grants DE-EE0009105 and DE-AR0001215.

In sparsification-based network pruning, the goal is to
select a subset of the original weights that are easily encoded
while preserving nominal performance on a test set. This
is achieved by either using a saliency-based criterion [3] or
adding a sparsifying penalty to the training loss. However,
such methods involve expensive retraining of the weights once
the subset is identified, as well as requires significant hyper-
parameter tuning. [7] propose a method called SNIP, which
identifies a salient subset of weights for a given dataset prior
to training. This avoids retraining the weights and offers a
computational advantage over existing methods but achieves
weaker compression performance as a trade-off.

[6] presents the Lottery Ticket hypothesis, wherein
they demonstrate the existence of randomly initialized sub-
networks whose weights can be optimized to achieve high
performance. Subsequent work by [10] stabilizes the algo-
rithm for finding a winning ‘ticket’ (i.e., a good sub-network)
via iterative pruning methods. However, iterative methods in-
cur more extensive computation than single-shot methods such
as [7]. [11] further suggests that finding the winning ticket for
very deep networks is an implicit consequence of the training
mechanism. In any case, all these methods require higher com-
putational costs, as well as significant hyperparameter tuning
overhead, than those incurred by a baseline training approach.
Our contributions. In this paper, we show that it is possible
to achieve excellent network pruning results with low compu-
tational costs and robustness to tuning hyperparameters.

In essence, our method merges [7]’s single-shot pruning ap-
proach with the iterative pruning strategy by [11]. We demon-
strate that our approach successfully pruning well-initialized,
large networks such as residual networks (ResNets). Some-
what surprisingly, our empirical results demonstrate that it
may be possible to compress neural networks to considerably
higher pruning levels than reported so far in the literature.

Our specific contributions are threefold:
1. We present an algorithm for training extremely sparse neu-

ral networks, by learning masking operators for the weights
using gradient updates through convex relaxation.

2. We provide extensive comparison on our approach on a
variety of models and datasets, outperforming various state-
of-the-art sparse pruning methods, especially for extreme
pruning ratios (> 99%).

3. Finally, we conduct ablation studies and hyperparameter



sensitivity experiments to analyse each component of our
approach in detail.

2. RELATED WORK

Early neural network compression approaches [12, 13] rely on
simple magnitude-based heuristic pruning tactics and show
significant compression of deep networks while preserving
performance. [12], [13], and [14] rely on iterative fine-tuning
and pruning to reduce the effect of removing weights on the
output.

While most of the above approaches are applied to pre-
trained existing networks, there has been a recent surge in
interleaving pruning and training approaches. Such techniques
rely on reparameterizing the weights and training over the
modified network. An obvious reparameterization is inducing
sparsity on model connections. However, training sparse mod-
els can be unstable. To resolve such issues, [15] and [5] use
iterative parameter growth, allowing the sparse architecture
additional degrees of freedom. Evolutionary approaches such
as [16] propose a dynamic sparsification model using con-
nectivity constraints to train an implicitly sparse model. [17]
further improve this by allowing a global sparsity constraint
instead of a layer-wise approach, thus forcing a network to
learn a consistent sparse model.

Another branch of pruning algorithms learns the auxiliary
(masking) parameters via gradient-based approaches by relax-
ing non-differentiable constraints (e.g., `0-constraints) to dif-
ferentiable estimators. [18] re-parameterizes the weights with
the element-wise product of its weight and auxiliary parame-
ters sampled by learning the hard concrete distribution. [19]
adopts the straight-through estimator to take gradients with
respect to the indicator function, which generates the binary
masks to train auxiliary parameters. [11] trains the auxiliary
parameters through gradient descent by reparameterizing with
Bernoulli samplers with sigmoidal probabilities on the auxil-
iary parameters. We note that our work and the recent works
by [20] are simultaneous works sharing similar concepts of
updating weights and masks simultaneously but take different
approaches to treat non-differentiable mask variables.

Instead of pruning in the middle of (or after) the train-
ing, [7, 21] proposes the method pruning network prior to the
training based on saliency scores from an untrained network.
While pruning an untrained network provides a huge advan-
tage in computational cost, the pruning algorithms on a trained
network provide par or better compressing performances than
single-shot prunings on untrained networks.

We note that while pruning individual weights has the ad-
vantage of compressing networks to the highest degree, only
modest gains on practical inference speeds are achieved due
to limited support for GPU-based parallel processing at the
weight level. Instead, structured pruning approaches [22, 23]
focuses on pruning of higher structures (such as neurons or
filters) such that entire rows/columns of the corresponding

weight matrix are zeroed out. In this work, we focus on un-
structured weight pruning by targeting competitive sparsity-
accuracy tradeoffs.

3. PRELIMINARIES

Notation. Let f : Rd → Rk be a neural network with weights
w ∈ Rm. Let ci ∈ {0, 1} be an auxiliary indicator variable
where each ci indicates if the weight wi is a salient parameter.
Saliency here refers to the effect of zeroing out wi on the final
risk. A high saliency value (greater than some threshold ε) will
be indicated by ci = 1.

To motivate our proposed approach, we first describe two
existing pruning methods.
SNIP. Single-Shot Network Pruning (SNIP) [7] introduces a
saliency based criterion to prune network connections. The
premise is that since neural networks are often overparameter-
ized, they have redundant connections which can be identified
prior to training using a saliency-based approach.

Given a dataset D = {x,y}, and a desired network spar-
sity level k, training a sparse neural network amounts to solv-
ing the following optimization problem:

min
w

L(f(w;x),y), s.t. ‖w‖0 ≤ k. (3.1)

Here, L(·) refers to any standard loss function, such as the
cross entropy or `2-loss. Enforcing the `0-constraint is com-
binatorially difficult but can be relaxed either via a sparsity
penalty [18, 24] or a saliency-based weight dropping mecha-
nism [12].

SNIP instead uses the following alternative formulation us-
ing an auxiliary indicator variable, c ∈ {0, 1}m that indicates
if a weight contributes (positively or negatively) to the output.
The modified loss therefore is as follows,

min
w,c

L(f(c�w;x),y), s.t. ‖c‖0 ≤ k. (3.2)

Here,� refers to element-wise multiplication. Observe that the
auxiliary variable decouples the constraint from the weights,
w. This decoupling allows for measuring the saliency of a
specific weight matrix by measuring the effect of removing a
connection. For example, if we consider the difference in loss
by removing the jth edge:

∆Lj = L(1�w)− L((1− ej)�w) ,

where ej is an indicator vector, then the absolute value of
∆Lj indicates the contribution of the jth parameter to the
performance of the network. Instead of directly computing ∆L
form weights which involves cumbersome forward passes, the
author approximates ∆L with the gradient, ∂L/∂cj , which
can be easily calculated using automatic differentiation. A
posteriori, only the top k connections with the highest gradient
values are retained.



Algorithm 1 ESPN-FINETUNE

1: Inputs: f(w): pre-trained network (w ∈ Rd), c = 1: auxil-
iary parameters, T : fine-tuning epochs, α: sparsity weight, η:
learning rate, p: pruning ratio, ε: threshold.

2: procedure TRAINING w AND c VIA SGD
3: w← (w, c)
4: while Nc ≥ d · (1− p) do
5: w← w − η∇w(L(f(w � c;x), y) + α‖c‖1)
6: Nc ← SUM(1(c > ε))
7: end while
8: w← w � c
9: c← 1(c > ε)

10: end procedure
11: procedure FINE-TUNE NETWORK

12: Train f(w � c) with respect to w for T epochs.
13: end procedure

Lottery Ticket Hypothesis. The Lottery Ticket (LT) hypoth-
esis proposed by [6] claims the existence of a smaller sub-
network within a standard large, dense neural network archi-
tecture that will provide competitive performance when trained
from scratch like that of the original network. This suggests
the need for network pruning to become an essential compo-
nent of the training process. However, in order to find such a
sub-network, the authors propose an iterative process that al-
ternately prunes and retrains the pruned network from scratch.
They also introduce ‘rewinding’, where one retrains the pruned
model starting with the initial (random) weights instead of the
final learned weights upon which the pruning is performed.

[11] further systematically analyse the LT hypothesis and
provide two important observations: (1) new values on kept
weights should have the same sign as the original initial values
(in line with why rewinding in [6] is important), (2) it is impor-
tant to set to masked weights to zero, instead of using values
other than zero. From the second observation, [11] suggests
that magnitude-based masking criteria (which [6] use) tends to
prune weights that seem to move towards zero during training.

4. PROPOSED APPROACH

While SNIP does enable very good network compression at
moderate computational cost, a single-shot approach before
training has several disadvantages. The primary issue is that
connection sensitivities estimated using single-shot techniques
may be erroneous. This may lead to the discarding of network
edges that eventually would lead to better network perfor-
mance.

To address these, we present a novel network pruning
method: Extremely Sparse Pruned Networks (ESPN). Our ap-
proach resembles SNIP but learns the sparse masking operator,
c, via a standard iterative gradient update framework instead
of using a single-shot estimator. This modification to the stan-
dard SNIP framework is also inspired by the observations from
Zhou et al. [11] that learning such sparse indicators can be

viewed as a natural process concurrent to training a neural
network on data.
Approach. Our approach consists of three steps:
1. pretraining w while freezing c = 1,
2. leveraging a relaxed form of the SNIP saliency objective

to train c, thereby pruning the network to required sparsity,
and finally,

3. finetuning the pruned network to boost final performance.
For the first step, we train our base architecture on the given

dataset to ensure a good initialization for the sparse problem.
However, we note that unlike previous works [12, 13, 18, 25],
which rely on a fully trained network as input, we do not
require our network to be trained to convergence. Instead, we
require the network to only be trained for a few iterations. We
also point out that in the case of preexisting networks, this step
can be safely skipped.

We further modify the SNIP objective to learn masks itera-
tively. First, instead of freezing weights and indicators, we si-
multaneously train them both, thus keeping track of sensitivity
values during training. To achieve this, we modify any given
architecture to have an additional matrix associated with each
weight matrix, such that C = {Ci = 1m×n|Wi ∈ Rm×n}.
This is similar to the implementation of the auxiliary variable
in SNIP. Secondly, we relax the sparsity constraint in Eq. 3.2
to an `1 penalty, so as to be make the objective differentiable.
The training objective is given by:

min
w,c

L(f(c�w,x),y) + α‖c‖1 . (4.1)

We rely on standard backpropagation (e.g. SGD) to update
both w and c, until we achieve the required sparsity. We
propose a simple update for c with c ∈ Rm initialized to 1
rather than randomly as in [11, 18–20, 26]. This is advised by
[11] observations regarding the masking operation. Note that
optimizing Eq. 4.1 with respect to c, c may no longer be sparse
with ci /∈ {0, 1}. Assuming that c is the optimal selection with
salient connections, we update w via the element-wise product
of w and c as per Eq. 4.1. Subsequently, we restore c to be
an indicator function by thresholding, 1(c > ε) where ε is a
hyperparameter corresponding to non-zero elements in c.

For our algorithm, the choice of the termination condition
is significant. Given a target pruning ratio p, we train both
weights w and c until sparsity of c is less or equal to target
sparsity 1 − p. While the alternative approach is to train w
and c with a given fixed training budget, the algorithm may
either not reach the required sparsity level or unnecessarily
waste computation. Our terminating condition allows us to
not only terminate the training but also removes a sensitive
hyperparameter (no. of epochs).

For the third (finetuning) step, we consider two variants.
The first variant simply trains the pruned network with the
given dataset with a low learning rate until we achieve the
desired accuracy (we call this ESPN-FINETUNE; see Alg. 1).

Alternatively, we can also use the ‘rewinding’ technique
from [6] and [27]. Rewinding involves training the pruned



architecture by initializing weights from a previously well-
performing supernetwork. In this case, we use the subset of
wt from the warm-up training (trained t epochs) instead of
pretrained weights. After learning auxiliary parameter c with
a procedure from Alg. 1 Line (4-9), we rewind to epoch t
updating weights by w = wt � c and train the model with
remaining budget. We call this ESPN-REWIND; see Alg. 2 in
Appendix.

5. EXPERIMENTS AND RESULTS

Experimental Setup. To ensure fair comparison, we run all
algorithms with author-provided official implementations and
with the best reported hyperparameters. Due to tight space
constraints, we defer details to the Appendix. Our implementa-
tion is available from https://github.com/chomd90/
extreme_sparse.

5.1. Experimental Results

CIFAR10/100 Dataset. We now evaluate ESPN on modern
architectures, VGG19 and ResNet32 on CIFAR10/100, and
Tiny-ImageNet image classification datasets. Note that the
total number of parameters of VGG19 and ResNet32 are 20M
and 1.9M, respectively.1 For VGG19 with CIFAR10, we show
comparable performance with DSR (the current state-of-the-
art) for lower compression ratios. However, we outperform
all other existing algorithms. Specifically, we draw attention
to the high pruning ratio of 99.5%, where we report minimal
degradation of accuracy for a highly sparse network with only
∼ 100k parameters. We observe that ESPN outperforms SNIP,
GraSP, LT, and DSR for all other cases except VGG19 with
CIFAR10 shown in Table 1 and Table 5 (Appendix). Espe-
cially, all our candidate algorithms except ESPN face huge
degradation in performance when pruning extreme pruning
ratio (99% and 99.5%).

We additionally compare our method with CS [20] by
compressing ResNet32 trained with the CIFAR10/100 dataset.
We use the best hyperparameters reported in the paper. We
attempt to match similar sparsity levels as CS. However, note
that the sparsity strength hyperparameter s0 cannot exactly
set up the designated pruning ratio. We observe that ESPN
outperforms the CS in all different spectrums of sparsity level
shown in Table 2 from Appendix.

We observe similar performance on Tiny-ImageNet as that
on CIFAR10/100 as seen in Table 3. While DSR achieved
significantly higher test accuracy on 90%-pruned VGG19 with
CIFAR10, ESPN performs on par with DSR at higher pruning
levels. Similar to the CIFAR10/100 case, ESPN outperforms
all other candidate algorithms for ResNet32 for three different
pruning ratios. We note that for the highest pruning ratio
(98%), ESPN outperforms other approaches by a large margin.

1We use the ResNet architecture defined in [21] for our analysis.

Table 1: ResNet32 on CIFAR10/100
Dataset CIFAR10
ResNet32 Acc: 93.93% Params: 1.9M

Pruning Ratio 95% 98% 99% 99.5%
(95K) (38K) (19K) (9.5K)

SNIP [7] 91.20 88.31 83.35 78.36
GraSP [21] 91.69 89.01 85.06 80.46
DSR [17] 92.80 90.46 44.96 41.86
LT+ [10] 90.57 88.51 85.81 80.31

ESPN-Rewind 91.83 90.54 89.93 89.31
ESPN-Finetune 93.06 92.49 90.65 88.77

Dataset CIFAR100

ResNet32 Acc: 74.83% Params: 1.9M

Pruning Ratio 95% 98% 99% 99.5%

SNIP [7] 63.82 54.09 38.32 27.38
GraSP [21] 66.20 56.90 47.30 32.63
DSR [17] 69.46 63.56 12.84? 8.11?

LT+ [10] 65.92 57.62 48.74 36.22

ESPN-Rewind 70.76 69.42 64.83 56.88
ESPN-Finetune 73.28 70.35 64.89 59.91

Table 2: ResNet32 Comparison on ESPN and CS
Method ESPN CS [20]

Metrics Pruning Ratio Acc Pruning Ratio Acc

CIFAR10 95% 93.06 94.94% 90.92
CIFAR10 98% 92.49 97.12% 90.14
CIFAR10 99.5% 88.77 99.55% 83.11
CIFAR10 99.8% 82.93 99.78% 72.21

CIFAR100 95% 73.28 94.98% 66.57
CIFAR100 98% 70.35 96.71% 65.28
CIFAR100 99% 64.89 98.23% 61.46
CIFAR100 99.5% 59.91 99.34% 58.10

Tiny ImageNet/ImageNet Dataset. We further test our al-
gorithm on ResNet50 (25.6M parameters) for the ImageNet
dataset. We test two different pruning ratios {80%, 90%} us-
ing our approach and compare with reported results for SNIP,
GraSP, and DSR. Note that our approach surpasses SNIP and
GraSP for all pruning ratios while being comparable to DSR.
Specifically, ESPN-FINETUNE outperforms DSR in top-1 ac-
curacy for the 80% case, while being comparable in all other
cases.
Comparison with Continuous Sparsification We briefly
compare the difference of our method and a contemporary
work: Continuous Sparsification (CS) [20]. CS proposes learn-
ing auxiliary parameters s by reparameterizing using a point-
wise sigmoid function σ(βs) where β is a temperature param-
eter. The auxiliary parameters s and the network parameters

https://github.com/chomd90/extreme_sparse
https://github.com/chomd90/extreme_sparse
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Fig. 1: Weight distribution comparisons on ResNet32/VGG19 with CIFAR10. Almost all pruning algorithms (including ESPN)
tend to prune weights in the middle layers. Surprisingly though, ESPN also tends to prune initial layers, concentrating most
non-zero weights in the final layers. We hypothesize that learning masks allows us to specifically learn sparser abstractions in
earlier layers, analogous to learning sparse features in older classification techniques.

Table 3: VGG19/ResNet32 on Tiny-Imagenet
Architecture VGG19: 61.70% (20M) ResNet32: 61.60% (1.9M)

Pruning Ratio 95% 98% 95% 98%
(1M) (400K) (95K) (38K)

SNIP [7] 57.12 0.5 40.41 24.81
GraSP [21] 59.53 56.54 48.45 37.25
DSR [17] 59.81∗ 58.36* 56.08* 12.42?

LT+ [10] 59.28 56.59 50.13 39.90

ESPN-Rewind 59.86 58.66 57.60 54.21
ESPN-Finetune 59.27 57.67 59.83 54.56

are updated simultaneously while gradually increasing β thus
forcing the sigmoid closer to a Heaviside function. They fur-
ther repeat the process for given N rounds, resetting β each
time. On the other hand, ESPN not only provides a simpler
approach to deal with non-differentiable parameters using sim-
ple thresholding but also finds better performing ResNet32
models for CIFAR10/100. We show quantitative comparisons
in the next section.

Table 4: ResNet50 on Imagenet

Architecture ResNet50 (25.6M)

Pruning Ratio (κ) 80% (5.1M) 90% (2.6M)

Test Accuracy Top-1 Top-5 Top-1 Top-5

Unpruned Model 76.15 92.87 - -
SNIP* 69.67 89.24 61.97 82.90
GraSP* 72.06 90.82 68.14 88.67
DSR# 73.3 92.4 71.6 90.5

ESPN-Rewind 72.60 91.08 68.70 89.00
ESPN-Finetune 74.34 92.10 71.93 90.68

5.2. Visualizing Weight Distribution of Pruned Networks

To understand better why ESPN outperforms other existing
pruning approaches in extreme pruning ratio, we visualize
sparsity ratios for each layer of the network. We analyze
VGG19 and ResNet32 trained with CIFAR10 with pruning
ratios: p = 90%. Conventional pruning algorithms tend to
remove fewer weights in earlier layers (to preserve fine fea-
tures of the input) and prune more in the deeper layers with
a higher number of parameters. While VGG19 weight distri-
butions from ESPN follow this trend, we observe that ESPN
shows a different trend on ResNet32 compared to SNIP and
Lottery Ticket hypothesis (Fig. 1). SNIP follows a trend of
conventional methods by pruning deeper layers aggressively
while preserving weights in the beginning. LT’s weight distri-
bution is comparatively uniform across layers. Given that LT
performs better than SNIP (refer Sec. 5.1), we hypothesize that
pruning deeper layers in ResNet32 aggressively may induce
information bottlenecks, degrading the performance signifi-
cantly. ESPN, counter-intuitively, prunes more in the earlier
layers and the middle layers than in deeper layers. Considering
that ESPN outperforms the SNIP and LT for most of the cases,
ESPN weight distribution counters the conventional pruning
intuition and emphasizes the importance of careful rather than
excessive pruning in deeper layers.

6. DISCUSSION AND CONCLUSIONS

In this work, we provide a new algorithm, ESPN, a simple and
scalable approach to prune a variety of neural network models.
While ESPN achieves comparable (even improved) accuracy
to SNIP, our algorithm is successfully able to compress the
network to extremely high pruning levels (> 99%), up to the
regime where the number of parameters is comparable to the
input size. To the best of our knowledge, our approach is the
first to achieve such high compression ratios for large networks
such as ResNet32.
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Experimental Setup To ensure fair comparisons, we run all
algorithms with official implementations and with the best hy-
perparameters reported in the literature. In the case of ESPN-
REWIND, for all experiments except ImageNet, we train the
network for 160 epochs through SGD with learning rate 0.1,
momentum parameter 0.9, and weight decay 0.0005. We also
decay the learning rate with a factor of 0.1 at epochs 80 and
120. For ImageNet, we adapt the official PyTorch implementa-
tion2 to train the pruned network for ESPN-REWIND without
modifying the hyperparameter setups (90 epochs, learning rate
0.1, learning rate decay 0.1 every 30 epochs, and weight decay
0.0001).

For ESPN-FINETUNE, we subsequently train the network
for 50 epochs with SGD with a learning rate of 0.001 with
a decay factor of 0.1 at epoch 30. We also use the weight
decay coefficient with 0.0005 for all training except ImageNet.
We use the pretrained ResNet50 from Pytorch library. For
ESPN finetuning stage, we train ResNet50 on ImageNet with
2/3 of training epochs to the official pytorch implementation
(60 epoch, learning rate 0.01, learning rate decay 0.1 at 30
and 50 epoch). For LT, we prune the fully-trained network
with respect to magnitude and rewind to the early epoch as
suggested in [27].

While we train both model weights and auxiliary param-
eters, we use a standard SGD with Nesterov-momentum 0.9,
and no weight decay penalty.

Algorithm 2 ESPN-REWIND

1: Inputs: f(w): Untrained Network (w ∈ Rd), t: warmup
epochs, T : epochs c = 1: auxiliary parameters, α: Lasso
coefficient, η: learning rate, p: pruning ratio, ε: threshold.

2: procedure WARMUP TRAINING
3: for epoch ∈ {1, . . . , t} do
4: w← w − η∇w(L(f(w)))
5: end for
6: wt ← w
7: end procedure
8: procedure TRAINING w AND c VIA SGD
9: w← (w, c)

10: while Nc ≥ d · (1− p) do
11: w← w − η∇w(L(f(w � c;x), y) + α‖c‖1)
12: Nc ← SUM(1(c > ε))
13: end while
14: c← 1(c > ε)
15: end procedure
16: procedure REWIND AND TRAIN THE NETWORK
17: w← wt � c
18: Train f(w) respect to w via SGD for T − t epochs
19: end procedure

Stability on Lasso Coefficient and Learning rate We check
our algorithm’s stability on lasso coefficient α and learning rate

2https://github.com/pytorch/examples/tree/master/imagenet

Table 5: VGG19 on CIFAR10/100
Dataset CIFAR10
VGG19 Acc: 93.53% Params: 20M

Pruning Ratio 95% 98% 99% 99.5%
(1M) (400K) (200K) (100K)

SNIP [7] 92.97 92.37 10.00# 10.00#

GraSP [21] 92.81 91.94 91.27 88.62
DSR [17] 94.00 93.57 93.15 91.62
LT+ [10] 93.15 92.70 91.29 10.00#

ESPN-Rewind 93.57 92.72 91.88 91.94
ESPN-Finetune 93.62 93.24 92.87 91.88

Dataset CIFAR100

VGG19 Acc: 73.96% Params: 20M

Pruning Ratio 95% 98% 99% 99.5%

SNIP [7] 71.90 19.60 1.00 1.00
GraSP [21] 71.28 68.72 65.84 60.28
DSR [17] 72.96 70.77 69.70 66.79
LT+ [10] 70.97 69.13 66.32 17.60

ESPN-Rewind 71.68 70.85 69.48 67.93
ESPN-Finetune 72.32 71.00 70.35 66.45

η by observing the sparsity of c while learning the auxiliary
parameters. We conduct experiments on tracking non-zero
elements in c with various learning rate and lasso coefficient.
We use pretrained LeNet300 (266K parameters) with MNIST
dataset. Our experiment shows that both strength and rate of
shrinkage on c are proportional to learning rate (η) and lasso
coefficient α as shown in Figure 2.
Ablation Study: Role of weight updates, auxiliary param-
eters, and the L1 penalty. In the previous section, we have
shown that our approach can prune the neural networks with
various pruning ratios, specifically for extreme cases (> 99%)
with minor sparsity-accuracy tradeoff. We now analyse each
of the components of ESPN through ablation studies.

We consider four different scenarios while learning the
auxiliary parameter c: (1) updating both w and c with L1
penalty on c (original ESPN), (2) only updating c with L1
penalty on c, (3) updating w and c without L1 penalty, and
(4) only updating c without L1 penalty. Then we compare
the test accuracy after the fine-tuning the model (Line 13).
We experiment on VGG19 with CIFAR10/100 datasets with
pruning ratio {70%, 80%, 90%, 95%, 95%, 99%, 99.5%,
99.8%, 99.9%} which includes common to extreme pruning
ratio. We observe that freezing weights and optimizing for
only c shows similar performance as ESPN, but is unstable for
some pruning ratios. We also see improvement in performance
when both w and c are updated. The results are shown in
Fig. 3
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Fig. 2: Strength and rate of shrinkage comparison depending on lasso coefficient and learning rate with LeNet300. This shows
that an extreme pruning ratio requires higher lasso coefficients to mee the condition sparsity of c less or equal to a targeted
number of weights. We note that overall sparsity ratios post training are nearly independent of the learning rate; however, `1
penalty choice needs to be high enough to ensure that we can achieve the required sparsity.
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Fig. 3: Ablation study on four different setups learning the auxiliary parameters: “Grad/No Grad” and “L1/No L1” correspond to
weights updated or not and L1 penalty on auxiliary parameters or not, respectively in stage 1. We test from regular to extreme
pruning ratio: {70%, 80%, 90%, 95%, 99%, 99.5%, 99.8%, 99.9%}.
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