
ONE-SHOT NEURAL ARCHITECTURE SEARCH
VIA COMPRESSIVE SENSING

Minsu Cho∗
ECE Department

Iowa State University
Ames, IA 50010

chomd90@iastate.edu

Mohammadreza Soltani
ECE Department
Duke University

Durham, NC, 27708
mohammadreza.soltani@duke.edu

Chinmay Hegde
ECE Department

Iowa State University
Ames, IA, 50010

chinmay@iastate.edu

ABSTRACT

Neural architecture search (NAS), or automated design of neural network models, remains a very
challenging meta-learning problem. Several recent works (called “one-shot” approaches) have
focused on dramatically reducing NAS running time by leveraging proxy models that still provide
architectures with competitive performance. In our work, we propose a new meta-learning algorithm
that we call CoNAS, or Compressive sensing-based Neural Architecture Search. Our approach merges
ideas from one-shot approaches with iterative techniques for learning low-degree sparse Boolean
polynomial functions. We validate our approach on several standard test datasets, discover novel
architectures hitherto unreported, and achieve competitive (or better) results in both performance
and search time compared to existing NAS approaches. Further, we support our algorithm with a
theoretical analysis, providing upper bounds on the number of measurements needed to perform
reliable meta-learning; to our knowledge, these analysis tools are novel to the NAS literature and may
be of independent interest.

1 Introduction

Motivation. Choosing a suitable neural network architecture for complex prediction tasks such as image classification
and language modeling often requires a substantial effort of trial-and-error. Therefore, there has been a growing interest
to automatically learn (or meta-learn) the architecture of neural networks that can achieve competitive (or better) results
over hand-designed architectures. The sub-field of neural architecture search (NAS) addresses the problem of designing
competitive architectures with as small a computational budget as possible.

Our Contributions. Numerous approaches for neural architecture search already exist in the literature, each with
their own pros and cons: these include black-box optimization based on reinforcement learning (RL) [1], evolutionary
search [2], and Bayesian optimization [3, 4]. Though the algorithmic details vary, most of these NAS methods face
the common challenge of evaluating the test/validation performance of a (combinatorially) large number of candidate
architecture evaluations. In a departure from traditional methods, we approach the NAS problem via the lens of
compressive sensing. The field of compressive sensing (or sparse recovery), introduced by the seminal works of [5, 6],
has received significant attention in both ML theory and applications over the last decade, and has influenced the
development of numerous advances in nonlinear and combinatorial optimization.

We leverage these advances for the NAS problem. We develop a new NAS method called CoNAS (Compressive sensing-
based Neural Architecture Search), which merges ideas from sparse recovery with so-called “one-shot” architecture
search methods [7], described in greater detail below. CoNAS consists of two new innovations: (i) a new search space
that permits exploration of a large(r) number of diverse candidate architectures, and (ii) a new search strategy that
borrows ideas from recovery of Boolean functions from their (sparse) Fourier expansions.

Our experiments show that CoNAS is able to design a deep convolutional neural network with test error 2.62± 0.06%
on CIFAR-10 classification, outperforming existing state-of-the-art methods such as DARTs [8], ENAS [9], and
∗Corresponding author. Website: http://dice.ece.iastate.edu/ .

ar
X

iv
:1

90
6.

02
86

9v
1

 [
cs

.L
G

]
 7

 J
un

 2
01

9

http://dice.ece.iastate.edu/

Stage 1 Stage 2

Train
one-shot
model
(f)

Sample
measurements

Approximate
one-shot
model

(g ≈ f)
with

compressive
sensing

Restrict f with
minimizer of g

Figure 1: Overview of CoNAS. A one-shot neural network model f is pre-trained, and an appropriate sub-graph of f is
chosen by iteratively applying sparse recovery techniques.

random search with weight-sharing (RSWS) [10]. Moreover, CoNAS performance is competitive to NASNet [11] and
AmoebaNet [2], despite requiring less than one GPU-day of computation. Our experiments on designing recurrent
neural networks for language modeling are somewhat short of the state-of-the-art [12], but we find that CoNAS still
finds competitive results with lesser search time than previous NAS approaches. Our results are exactly reproducible
(having been trained with fixed pseudorandom seeds), and an implementation of CoNAS will be made publicly available
post-peer review.

Finally, while our original motivation was to devise a empirically useful NAS method, a nice benefit is that CoNAS can
be theoretically analyzed, since existing theoretical results for Fourier-sparse Boolean functions can be ported over in
order to provide upper bounds for the number of one-shot evaluations required. This, to our knowledge, is one of the
first results of their kind in the NAS literature and may be of independent interest. We defer this to the supplementary
material.

Techniques. The intuition behind compressive sensing is that if a signal (or function) can be represented via a sparse
basis expansion, then it can be recovered (either exactly or approximately) from a small number of randomized
measurements. CoNAS leverages this intuition in the context of one-shot architecture search [7]. In one-shot NAS,
instead of evaluating several candidate architectures, a single “base” neural network model is pre-trained; a class of
sub-networks is identified (called the search space) and the performance of each sub-network is evaluated on a validation
set; and the best-performing sub-network is finally selected and fine-tuned.

We model the sub-network selection as a sparse recovery problem. More concretely, consider a function f that maps
sub-architectures to a measure of performance (validation loss). We assume that f can be written as a sparse, low-degree
polynomial in the (discrete) Fourier basis2. If the sparsity assumption is satisfied, then we claim the function f can
be reconstructed using a very small number of measurements (evaluations), thus reducing overall compute time. A
key challenge lies in defining a suitable search space; we propose one that is considerably larger than the one used in
DARTS or ENAS, allowing us to (putatively) search over a more diverse set of candidate architectures.

Prior work. Due to tight space limits, our review of prior work will be unfortunately brief; we refer to the recent
paper by [10] for a thorough treatment. Early NAS approaches used RL-based controllers [11]) or evolutionary
algorithms [2], and showed competitive performance with manually-designed architectures such as deep ResNets [14]
and DenseNets [15]. However, these approaches required substantial computational resources, running into thousands
of GPU-days. Subsequent NAS works have focus on boosting search speeds by proposing novel search strategies,
such as sequential model-based optimization (SMBO) techniques [16], Bayesian optimization [3, 4]) and Monte Carlo
tree search (MCTS) [17]. Other recent NAS approaches include weight-sharing [9], hypernetworks [18], one-shot
models [7], network transformations [19, 20, 21, 22, 23], gradient descent [24, 8, 25, 26], and random exploration
[27, 10, 28, 29].

2Intuitively, this means that f is well-approximated by a decision tree; for a formal proof, see [13].

2

2 Background

One-shot NAS We briefly describe one-shot neural architecture search techniques [7, 10]; a lengthier description is
available in Appendix A.1. Following the recent NAS survey paper [30], one-shot NAS approaches have three main
components: a search space, a search strategy, and a performance estimation strategy.

Search Space. The goal of one-shot NAS is to find the best performing cell, a fundamental component from which
more complex architectures are constructed via stacking. Following [8], a cell is a directed acyclic graph (DAG) where a
node corresponds to the latent representation, and a directed edge transforms predecessor nodes using a given operation;
common operations used in CNNs include 3× 3 and 5× 5 separable convolutions, 3× 3 max pooling, 3× 3 average
pooling, and Identity. Each cell has two input nodes and one output node, and intermediate nodes can only be connected
by predecessor nodes including input nodes. Intermediate nodes are wired to two predecessor nodes in CNNs and one
predecessor node in RNNs.

Search Strategy and Performance Estimation Strategy. Having defined a search space, one-shot NAS approaches
employ four steps: (i) train a single “one-shot” base model that is capable of predicting the performance of sub-
architectures; (ii) randomly sample sub-architectures of a trained one-shot model and measure performance over a
hold-out validation set of samples; (iii) select the candidate (cell) with best validation performance. (iv) retrain a deeper
final architecture using the best cell. Using the one-shot model as the proxy measurements of the candidate architecture
corresponds to the performance estimation strategy (first and second step). The search strategy of one-shot architecture
search on both [7] and [10] is equivalent to random search.

Fourier analysis of Boolean functions. We follow the treatment given in [31]. A real-valued Boolean function is
one that maps n-bit binary vectors (i.e., nodes of the hypercube) to real values: f : {−1, 1}n → R. Such functions can
be represented in a basis comprising real multilinear polynomials called the Fourier basis, defined as follows:

Definition 2.1 (Fourier Basis [31]). For S ⊆ [n], define the parity function χS : {−1, 1}n → {−1, 1} such that
χS(α) =

∏
i∈S αi. Then, the Fourier basis is defined as the set of all 2n parity functions {χS}.

The key fact is that the basis of parity functions forms an K-bounded orthonormal system (BOS) with K = 1, therefore
satisfying two properties:

〈χS , χT 〉 =
{
1, if S = T

0, if S 6= T
and sup

α∈{−1,1}n
|χS(α)| ≤ 1 for all S ∈ [n] (2.1)

Due to orthonormality, any Boolean function f has a unique Fourier representation, given by f(α) =∑
S⊆[n] f̂(S)χS(α), with Fourier coefficients f̂(S) = Eα∈{−1,1}n [f(α)χS(α)] where expectation is taken with

respect to the uniform distribution over the nodes of the hypercube.

A modeling assumption is that the Fourier spectrum of the function is concentrated on monomials of small degree (≤ d).
This corresponds to the case where f is a decision tree [13], and allows us to simplify the Fourier expansion by limiting
its support. Let Pd ⊆ 2[n] be a fixed collection of Fourier basis such that Pd := {χS ⊆ 2[n] : |S| ≤ d}. Then Pd ⊆ 2[n]

induces a function space consisting of all functions of order d or less, denoted byHPd := {f : Supp[f̂] ⊆ Pd}. For
example, P2 allows to express the function f with at most

∑d
l=0

(
n
2

)
≡ O(n2) Fourier coefficients.

Lastly, if we have prior knowledge of some fixed set of bits indexed by set J , we often use an operation called restriction.

Definition 2.2 (Restriction [31]). Let f : {−1, 1}n → R, (J, J) be a partition of [n], and z ∈ {−1, 1}J . The restriction
of f to J using z denoted by fJ|z : {−1, 1}J → R is the subfunction of f given by fixing the coordinates in J to the bit
values z.

3 Proposed Algorithm: CoNAS

Overview. Our proposed algorithm, Compressive sensing-based Neural architecture Search (CoNAS), infuses ideas
from Boolean Fourier analysis into one-shot NAS. CoNAS consists of two novel components: an expanded search
space, and a more effective search strategy.

Search Space. Following the approach of DARTS [8], we define a directed acyclic graph (DAG) where all predecessor
nodes are connected to every intermediate node with all possible operations. We represent any sub-graph of the DAG

3

Cell Choice i

Output

Softmax

Cell3

Cell2

Cell1

Stem2

Stem1

Image Cellk−2 Cellk−1

Choice1 Choice2

Node1
Choice3 Choice4

Choice5

Node2

Concat.

Input 1 Input 2 Input 3 Input L

Concat.

Identity5x5

5x5

3x3

3x3

Max Pool Avg Pool

Sum

αi

αi+1
αi+2 αi+3

αi+4

Figure 2: Diagram adapted from [7]. The architecture encoder α samples the sub-architecture for N = 5 nodes (two
intermediate nodes) with five different operations. Each component in α maps to the edges one-to-one in all Choice
blocks in a cell. If a bit in α corresponds to 1, the edge activates, while −1 turns off the edge. Since the CNN search
space finds both normal cell and reduce cell, the length of α is equivalent to (2 + 3) · 5 · 2 = 50.

using a binary string α called the architecture encoder. Its length is the total number of edges in the DAG, and a 1 (resp.
−1) in α indicates an active (resp. inactive) edge.

Figure 2 gives an example of how the architecture encoder α samples the sub-architecture of the fully-connected
model in case of a convolutional neural network. The goal of CoNAS is to find the “best’ encoder α∗, which is "close
enough" to the global optimum returning the best validation accuracy by constructing the final model with α∗ encoded
sub-graph.

Since each edge can be switched on and off independently, the proposed search space allows exploring a cell with
more diverse connectivity patterns than DARTS [8]. Moreover, the number of possible configurations exceeds similar
previously proposed search spaces with constrained wiring rules [10, 9, 2, 11]. For example, suppose the DAG for a
convolutional neural network model has N = 7 nodes with five operations. The total number of edges is equivalent to
E = (2 + 3 + 4 + 5) · 5 · 2 = 140; if 1/4 of the edges are activated, then the number of possible combinations is equal
to
(

140
35

)
≈ 1.2× 1033, while DARTs with five operations only supports ((5 + 1)14)2 ≈ 6.1× 1021 configurations.

Search Strategy. We propose a compressive measuring strategy to approximate the one-shot model with a Fourier-
sparse Boolean function. Let f : {−1, 1}n → R map the sub-graph of the one-shot pre-trained model encoded by α to
its validation performance. Similar to [13], we collect a small number of function evaluations of f , and reconstruct
the Fourier-sparse function g ≈ f via compressive sensing with randomly sampled measurements. Then, we solve
argminα g(α) by exhaustive enumeration over all coordinates in its sub-cube {−1, 1}J where (J, J) partitions [n].
If the solution of the argminα g(α) does not return enough edges to construct the cell (some intermediate nodes are
disconnected), we simply perform sparse recovery multiple times, following [13]. In each iteration, we restrict the
approximate function g by by fixing the bit values found in the previous solution, and randomly sample sub-graphs in
the remaining edges.

Full Algorithm. We now describe CoNAS in detail, with pseudocode shown in Algorithm 1. We first train a one-shot
model with standard backpropagation but only updates the weight corresponding to randomly sampled sub-graph edges
for each minibatch. Then, we randomly sample sub-graphs by generating architecture encoder strings α ∈ {−1, 1}n
using a Bernoulli(p) distribution for each bit of α.

In the second stage, we collect m measurements of randomly sampled sub-architecture performance denoting y =
(f(α1), f(α2), . . . , f(αm))T . Next, we construct the graph-sampling matrix A ∈ {−1, 1}m×|Pd| with entries

Al,k = χS(αl), l ∈ [m], k ∈ [|Pd|], S ⊆ [n], |S| ≤ d (3.1)

where d is the max degree of monomials in the Fourier expansion. We solve the familiar Lasso problem [32]:

x∗ = argmin
x∈R|Pd|

‖y −Ax‖22 + λ‖x‖1 (3.2)

to (approximately) recover the global optimizer x∗, the vector containing the Fourier coefficients corresponding to
Pd. We define an approximate function g ≈ f with Fourier coefficients with the top-s (absolutely) largest coefficients

4

Algorithm 1 CONAS

1: Inputs: Number of one-shot measurements m, stage t, sparsity s, lasso parameter λ

Stage 1 – Training the One-Shot Model

2: procedure MODEL TRAINING
3: while not converged do
4: Randomly sample a sub-architecture encoded binary vector α
5: Update weights wα by descending∇wαLtrain(wα)
6: end while
7: end procedure

Stage 2 – Search Strategy

8: procedure ONE-SHOT MODEL APPROXIMATION VIA COMPRESSIVE SENSING
9: for k ∈ {1, . . . , t} do

10: Collect y = (f(α1), f(α2), . . . , f(αm))>.
11: Solve

x∗ = argmin
x

‖y −Ax‖22 + λ‖x‖1

12: Let x∗1, x
∗
2, . . . , x

∗
s be the s absolutely largest coefficients of x∗. Construct

g(α) =

s∑
i=1

x∗iχi(α)

13: Compute minimizer z = argminα g(α) and let J the set of indices of z.
14: f = fJ|z
15: end for
16: Construct the cell by activating the edge where zi = 1 where i ∈ [n].
17: end procedure

from x∗. We compute the minimizer α∗ = argminα g(α) calculating all possible points in the subcube defined by the
support of g (the minimizer computation is feasible if s is small). Multiple stages of sparse recovery (with successive
restrictions to previously obtained optimal α∗) enable to approximate additional monomial terms. Finally, we obtain
the cell to construct the final architecture by activating the edges corresponding to all i ∈ [n] such that α∗i = 1. We
include theoretical support for CoNAS in Appendix A.2.

4 Experiments and Results

We experimented on two different NAS problems: a CNN search for CIFAR-10, and an RNN search for Penn Treebank
(PTB). We describe the training details for CIFAR-10 and PTB in Sections 4.1 and 4.2 respectively. Our experimental
setup for building the final architecture is the same as that reported in DARTS and RSWS.

4.1 CIFAR-10

Architecture Search. We create a one-shot architecture, similar to RSWS, with a cell containing N = 7 nodes with
two nodes as input and one node as output; our wiring rules between nodes are different and as in Section 3. We
used five operations: 3× 3 and 5× 5 separable convolutions, 3× 3 max pooling, 3× 3 average pooling, and Identity.
On CIFAR-10, we divide the 50,000 training set to 25,000 training set and 25,000 validation set as the equivalent
experiment setup in [10] and [8]. We trained a one-shot model with eight layers and 16 initial channels for 150 epochs.
All other hyperparameters used in training the one-shot model are the same as in RSWS.

We run CoNAS with multiple sparse recovery stages. Specifically, following [13], we used the parameters s = 10,
Fourier basis degree d = 2, and Lasso coefficient λ = 1 for each stage. Repeating three to four stages (t = 3, 4) of
sparse recovery with restriction returned an architecture encoder α∗ with sufficient number of edges needed to construct
both normal cell and reduce cell (e.g., see Figure 3). The final architecture found from CoNAS used t = 4.

Architecture Evaluation. We re-trained the final architecture with the learned cell with the equivalent hyper-
parameter configurations in DARTS and RSWS to make the direct comparisons. We used NVIDIA Titan X for

5

c_{k-2}

0

skip_connect

sep_conv_5x5 2

sep_conv_5x5

c_{k-1}

skip_connect
1

sep_conv_3x3 3

avg_pool_3x3

sep_conv_3x3

skip_connect

sep_conv_5x5

max_pool_3x3

c_{k}
max_pool_3x3

sep_conv_5x5

skip_connect

sep_conv_5x5

sep_conv_5x5

(a) Normal Cell

c_{k-2}

0

avg_pool_3x3

skip_connect

1

max_pool_3x3

skip_connect
2

avg_pool_3x3
skip_connect

3

max_pool_3x3

avg_pool_3x3

c_{k-1}
max_pool_3x3

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

skip_connect

sep_conv_5x5

skip_connect

skip_connect

skip_connect

sep_conv_3x3

sep_conv_5x5

c_{k}
max_pool_3x3

sep_conv_3x3
skip_connect

(b) Reduce Cell

Figure 3: Convolution Cell found from CoNAS

the training process. Since DARTS and RSWS used somewhat different GPUs (GTX1080-Ti and Tesla P100 respec-
tively), we included not only the experimental results that have been published, but also our results of DARTs and
RSWS on a Titan X to compare the search time with equivalent GPU environment in Table 1. Due to hardware memory
constraints, the learned cell from CoNAS could not use the same minibatch size (96) used in DARTs and RSWS;
instead, we re-trained the final model with minibatch size (56) 3.

Effect of Increasing Connections in the Cell. We provide a further supplementary experiment of training results of
randomly wired cells which have a similar number of edges to the cell found by CoNAS. We randomly sampled the
architecture code α with Binomial(140, 1/4) for each digit being 1 that the expected number of total edges in normal
cell and reduce cell is 35. We randomly selected three architectures as shown in Appendix A.4.4 and trained with the
equivalent environment to the section 4.1. Table 2 shows that choosing a larger number of randomly chosen edges is
not sufficient to improve the model’s performance.

4.2 Penn Treebank

Architecture Search. Similar to the setup of DARTS and RSWS, CoNAS explores the cell with the following
operations: Tanh, ReLU, Sigmoid, and Identity. We augment the RNN cell with a variation of highway connections
suggested by Pham et al [9]. Layers of depth l in Recurrent Highway Network [12] utilize a nonlinear transformation
from its hidden state hl as follows:

hl = (1− cl)⊗ activation(hl−1 ·W (h)
l,l−1) + hl−1 ⊗ cl

3In our experience, a larger minibatch size enabled training the model quicker than minibatches of smaller size.

6

Table 1: CIFAR-10 Benchmark: Comparison with hand-designed networks and state-of-the-
art NAS methods (Lower test error is better). The results are grouped as follows: manually
designed networks, published NAS algorithms, and our experimental results. The average test error
of our experiment used five random seeds. Table entries with "-" indicates that either the field is not
applicable or unknown. The methods listed in this table are trained with auxiliary towers and cutout
augmentation. The search cost from our experiment is based on NVIDIA Titan X GPU.

Test Error Params Search Cost Search
Architecture Best Average (M) GPU days Method

Shake-Shake [33] - 2.56± 0.07 26.2 - manual
PyramidNet [34] 2.31 - 26 - manual

ProxylessNAS+ [24] 2.08 - 5.7 4 gradient
NASNet-A [11] - 2.65 3.3 2000 RL
AmoebaNet-B [2] - 2.55± 0.05 2.8 3150 evolution
GHN+ [35] - 2.84± 0.07 5.7 0.84 hypernetwork
SNAS [26] - 2.85± 0.02 2.8 1.5 gradient
ENAS [9] 2.89 - 4.6 0.45 RL
Random search [8] - 3.29± 0.15 3.1 4 random
DARTs (first order) [8] - 3.00± 0.14 3.3 1.5 gradient
DARTs (second order) [8] - 2.76± 0.09 3.3 4 gradient
ASHA [10] 2.85 3.03± 0.13 2.2 - random
RSWS [10] 2.71 2.85± 0.08 4.3 2.7 random
DARTs# (second order) [10] 2.62 2.78± 0.12 3.3 4 gradient

DARTs† (second order) 2.59 2.78± 0.13 3.4 4 gradient
RSWS* 2.47 2.59± 0.11 4.7 0.7 random
CoNAS 2.55 2.62± 0.06 4.8 0.7 CS

DARTS experimental results from [10].
† Used DARTS search space with five operations for direct comparisons.
* Used the search space defined in Section 3. Used five operations for direct comparison.
+ The search space is not comparable to CoNAS.

Table 2: Randomly Wired Model Performance on CIFAR-10. (Lower test error is better) Trained with auxiliary
towers and cutout augmentation.

Method Number of Edges Size (M) Test Error

Randomly Wired Model (1) 31 5.2 3.45%
Randomly Wired Model (2) 35 4.5 2.89%
Randomly Wired Model (3) 32 3.1 3.52%

where "⊗" denotes element-wise multiplication. Since we use an expanded search space, we allow for mulitple opera-
tions; in such cases, we replace activation(hl−1 ·W (h)

l,l−1) with its sum-pooled version, 1
n

∑n
i activation

i(hl−1 ·
W

(h)
l,l−1)

Pre-training the above RNN using weight-sharing showed unstable results since the sub-graphs could have some internal
nodes with no connections, leading to exploding gradients; increasing the p-parameter in the Bernoulli sampling to
enforce connectivity significantly slowed down computations. Hence, we added the additional heuristic of randomly
activating an edge to connect the intermediate node if the node does not have any input edge according to its architecture
encoder α.

After obtaining the one-shot model, we randomly sample the measurements of the sub-graph without the above
heuristic used in the training stage. While running CoNAS, two stages of sparse recovery with s = 10 and s = 5
respectively found the enough number of edges for the RNN cell. If the final resulting cells has intermediate nodes with
a disconnected input, we added ReLU operations from the previous intermediate node. The visualization of the RNN
cell found by CoNAS is shown in Appendix A.4.1.

Architecture Evaluation. The PTB results for recurrent architectures are presented in Table 3. We trained the final
RNN model with the learned cell with the equivalent hyperparameters in DARTs and RSWS, except with minibatch

7

Table 3: PTB Benchmark: Comparision of the state-of-the-art NAS methods and
hand-designed networks (Lower perplexity is better). The results are grouped in follow-
ing orders: manually designed networks, published NAS algorithms, and our experimental
results. The average test error of our experiment used five random seeds. Table entries
with "-" indicates either the field is not applicable or unknown. The search cost from our
experiment is based on a NVIDIA Titan X GPUs.

Test Perplexity Params Search Cost Search
Architecture Valid Test (M) GPU days Method

Variational RHN [12] 67.9 65.4 23 - manual
LSTM + DropConnect [36] 60.0 57.3 24 - manual
LSTM + Mos [37] 56.5 54.4 22 - manual

NAS [1] - 64.0 25 1e4 RL
ENAS† [9] - 56.3 24 0.5 RL
Random search† [8] 61.8 59.4 23 2 random
DARTS (1st order)† [8] 60.2 57.6 23 0.5 gradient
DARTS (2nd order)† [8] 58.1 55.7 23 1 gradient
ASHA* [10] 58.6 56.4 23 - random
RSWS* [10] 57.8 55.5 23 0.25 random

RSWS#, + 60.6 57.9 23 0.25 random
CoNAS+ 59.1 56.8 23 0.25 CS

We used the RSWS code with adjusting the search time equivalent to CoNAS.
† Used NVIDIA GTX 1080Ti GPU for training/searching.
* Used Tesla P100 GPU for training/searching.
+ Used NVIDIA Titan X GPU for training/searching.

size = 128 (due to hardware constraints). We also included the experimental results with RSWS methods allocating
the equivalent search time with our methods to make the direct comparison with CoNAS. Since the published NAS
literature in Table 3 uses different GPU hardware (e.g. DARTs and ENAS: NVIDIA GTX 1080Ti, RSWS: Tesla P100),
a one-to-one comparison of the search cost value listed in Table 3 is not applicable. For example, both CoNAS and
RSWS required 0.25 GPU-days, but the latter used a more powerful GPU. We will provide a more precise one-to-one
comparison if this manuscript passes peer review.

4.3 Discussion

Noticeably, CoNAS achieved improved results on CIFAR-10 in both test error and search cost when compared to the
previous state-of-the-art algorithms: DARTs, RSWS, and ENAS. We see that RSWS with an equivalent search space
to CoNAS obtained a better architecture (with best test error 2.47%); however, the standard deviation of test errors
over different pseudorandom was greater than CoNAS. Many previous NAS papers have focused on the search strategy
while adopted the same search space tol [11] and [8]. Our experimental results highlight the importance of considering
not only seeking new performance strategies, but also the search space.

On PTB, CoNAS found a better RNN architecture than RSWS using an equivalent search cost. In the overall comparison,
DARTs (second order) and RSWS outperformed both valid and test perplexity of CoNAS. We could not include true
one-to-one comparisons with other algorithms since they used different search spaces.

Acknowledgements

The authors would like to thank Amitangshu Mukherjee, Soumik Sarkar, and Alberto Speranzon for helpful discussions.
This work was supported in part by NSF grants CCF-1566281, CAREER CCF-1750920, a GPU gift grant from the
NVIDIA Corporation, and a faculty fellowship from the Black and Veatch Foundation.

References

[1] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. Proc. Int. Conf. Learning
Representations, 2017.

8

[2] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
architecture search. Proc. Assoc. Adv. Art. Intell. (AAAI), 2019.

[3] Shengcao Cao, Xiaofang Wang, and Kris M Kitani. Learnable embedding space for efficient neural architecture
compression. Proc. Int. Conf. Learning Representations, 2019.

[4] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing. Neural architecture
search with bayesian optimisation and optimal transport. Adv. Neural Inf. Proc. Sys. (NeurIPS), 2018.

[5] Emmanuel Candes, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inform. Theory, 2006.

[6] David L Donoho et al. Compressed sensing. IEEE Trans. Inform. Theory, 2006.

[7] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding and
simplifying one-shot architecture search. Proc. Int. Conf. Machine Learning, 2018.

[8] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. Proc. Int. Conf.
Machine Learning, 2018.

[9] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture search via
parameter sharing. Proc. Int. Conf. Machine Learning, 2018.

[10] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. arXiv preprint
arXiv:1902.07638, 2019.

[11] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable
image recognition. IEEE Conf. Comp. Vision and Pattern Recog, 2018.

[12] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber. Recurrent highway networks.
Proc. Int. Conf. Machine Learning, 2017.

[13] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: a spectral approach. arXiv preprint
arXiv:1706.00764, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. IEEE
Conf. Comp. Vision and Pattern Recog, 2016.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional
networks. IEEE Conf. Comp. Vision and Pattern Recog, 2017.

[16] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture search. Euro. Conf. Comp. Vision, 2018.

[17] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep architectures.
arXiv preprint arXiv:1704.08792, 2017.

[18] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model architecture search
through hypernetworks. Proc. Int. Conf. Learning Representations, 2018.

[19] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by network
transformation. Proc. Assoc. Adv. Art. Intell. (AAAI), 2018.

[20] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture search via
lamarckian evolution. Proc. Int. Conf. Learning Representations, 2019.

[21] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali Razavi, Oriol
Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training of neural networks. arXiv
preprint arXiv:1711.09846, 2017.

[22] Haifeng Jin, Qingquan Song, and Xia Hu. Efficient neural architecture search with network morphism. arXiv
preprint arXiv:1806.10282, 2018.

[23] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical
representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

[24] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and hardware.
Proc. Int. Conf. Learning Representations, 2019.

[25] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. Adv. Neural
Inf. Proc. Sys. (NeurIPS), 2018.

[26] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. arXiv preprint
arXiv:1812.09926, 2018.

9

[27] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht, and Ameet
Talwalkar. Massively parallel hyperparameter tuning. Adv. Neural Inf. Proc. Sys. Workshop (NeurIPS Workshop),
2018.

[28] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating the search phase
of neural architecture search. arXiv preprint arXiv:1902.08142, 2019.

[29] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural networks for
image recognition. arXiv preprint arXiv:1904.01569, 2019.

[30] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377, 2018.

[31] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[32] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), pages 267–288, 1996.

[33] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

[34] Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop regularization for deep
residual learning. Proc. Int. Conf. Learning Representations Workshop, 2018.

[35] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search. Proc. Int.
Conf. Learning Representations, 2018.

[36] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm language models.
Proc. Int. Conf. Learning Representations, 2018.

[37] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax bottleneck: A
high-rank rnn language model. Proc. Int. Conf. Learning Representations, 2018.

[38] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal encoding
strategies? IEEE Trans. Inform. Theory, 2006.

[39] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Bull. Am. Math,
54:151–165, 2017.

[40] Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian measurements.
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 2008.

[41] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. Restricted isometry of fourier matrices and
list decodability of random linear codes. SIAM Journal on Computing, 2013.

[42] Jean Bourgain. An improved estimate in the restricted isometry problem. Geometric Aspects of Functional
Analysis: Israel Seminar (GAFA), page 65, 2014.

[43] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier matrices. Geometric Aspects
of Functional Analysis, pages 163–179, 2017.

[44] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. Applied and
computational harmonic analysis, 2009.

[45] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit.
IEEE Trans. Inform. Theory, 2007.

10

A Appendix

A.1 Detailed Background of One-Shot Neural Architecture Search

In this section, we explain the one-shot neural architecture search in more details regarding of three directions introduced
by [30].

Search Space. First, we start with the search space, defining the principles of constructing neural architecture. As
discussed before, simplifying the search space using human prior knowledge can help search algorithms to find an
optimal candidate faster. However, it may limit the algorithm to find a novel architecture beyond our knowledge due to
human bias.

Search Strategy Next, we have a search strategy which is considered as a methodology to find the best neural
architecture. In the last two years, different methodologies for search space such as reinforcement learning, evolutionary
algorithms, SMBO, Bayesian optimization, bilevel optimization, and randomness are introduced in NAS literature. For
instance, one-shot architecture uses random search as a search strategy.

Performance Estimation Strategy. The last direction aims to reduce the computational cost efficiently by estimating
the validation performance. The conventional performance estimating methods require the massive computational
resources as each model need to be trained and evaluated separately. In particular, assume that our goal is to construct a
CNN by using a proxy architecture through randomly selected cell samples by concatenating eight layers with 16 initial
channels (This is the same proxy model setup in DARTs). Then, we measure the validation loss from 50 epochs trained
model where each epoch takes five minutes of training. As a result, the total sampling time to collect 4,000 randomly
sampled of the architecture performance (which is the same number of measurements as our experiment using CoNAS)
equals to 5 · 50 · 4000 · 1

60 ·
1
24 ≈ 694 days.

A.2 Theoretical Support for CoNAS

A Boolean function f defined over a binary n-bit input may expresses using 2n polynomial basis functions (which
is intractable). As discussed in [13], instead, we can focus on all the polynomial basis with degree at most d, that
is, we have |Pd| ≡ O(nd) basis (parity) functions). On the other hand, the system of linear equations y = Au with
the graph-sampling matrix A ∈ {−1, 1}m×O(nd), measurements y ∈ Rm, and Fourier coefficient u ∈ RO(nd) is an
ill-posed problem when m� O(nd) for large n. While the underdetermined system of linear equations is an ill-posed,
it has been shown that if the graph-sampling matrix satisfies Restricted Isometry Property (RIP), the sparse coefficients,
u can be recovered.

We recall the definition of RIP:

Definition A.1. A matrix A ∈ Rm×O(nd) satisfies the restricted isometry property of order s with some constant δ if
for every s-sparse vector u ∈ RO(nd) (i.e., only s entries are non-zero) the following holds:

(1− δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22.

Now, we assume that the Fourier support of f is s-sparse. In addition, in our case, the columns of graph-sampling
matrix A (the atoms of dictionary A) include the parity function. Hence, the columns of matrix A form a bounded
orthonormal system (BOS), i.e., supα∈{−1,1}n |χS(α)| ≤ 1 for all S ∈ [n].

There has been significant research during the last decade in proving upper bounds on the number of rows of bounded
orthonormal dictionaries (matrix A) for which A is guaranteed to satisfy the restricted isometry property with high
probability. One of the first BOS results was established by [38], where the authors proved an upper bound scales as
O(sd6 log6 n) for a subsampled Fourier matrix. While this result is seminal, it is only optimal up to some polylog
factors. In fact, the authors in chapter 12 of [39] have shown a necessary condition (lower bound) on the number of
rows of BOS which scales as O(sd log n). In an attempt to achieve to this lower bound, the result in [38] was further
improved by [40] to O(sd log2 s log(sd log n) log n). Motivated by this result, [41] has even reduced the gap further by
proving an upper bound on the number of rows as O(sd log3 s log n). The best known available upper bound on the
number of rows appears to be O(sd2 log s log2 n); however with worse dependency on the constant δ, i.e., δ−4 (please
see [42]). To the best of our knowledge, the best known result with mild dependency on δ (δ−2) is due to [43], which
we can invoke for our setup. In our case, the graph-sampling matrix A in our proposed CoNAS algorithm satisfies BOS
for K = 1 (equation 3.1).

11

Theorem A.2. Let graph-sampling matrix A ∈ {−1, 1}m×O(nd) be constructed by taking m rows (random sampling
points) uniformly and independently from the rows of a square matrix M ∈ {−1, 1}O(nd)×O(nd). Then normalized ma-

trix A (multiplied by
√
O(nd)
m) withm = O(log2(1

δ)δ
−2s log2(sδ)d log n) with probability at least 1−2−Ω(d logn log(sδ))

satisfies the restricted isometry property of order s with constant δ; as a result, every s-sparse vector u ∈ RO(nd) is
recovered from the samples

y = Au =
(|O(nd)|∑

j=1

ujAi,j

)m
i=1

by LASSO (equation 3.2). It is worthwhile to mention that we can use any other sparse recovery method such as
IHT [44], or OMP [45] in our algorithm.

Therefore, Theorem A.2 leads to successfully guarantee approximation of the function using the Boolean Fourier basis
given the sufficient number of measurements.

A.3 Effect of Multiple Stages Sampling

Now we talk briefly about the advantage of using multiple stages in CoNAS. As mentioned in the algorithm pseudocode,
after each stage of recovery, the algorithm uses multiple stages of recovery process to find the final architecture. This
is similar to the idea of de-biasing step in Hard-Thresholding (HT) algorithm [39] introduced in the sparse recovery
literature where first the support is estimated and then within the estimated support the sparse coefficients are calculated
through a least-square computation. However in our setup, we have to solve a non-linear optimization problem to get
better estimation of the sparse Fourier coefficients. For instance, in Table 4, we have illustrated an experiment which
shows that the sparse recovery process with multiple stages can discover the important edges; as a result to find a
more accurate architecture. In this experiment, we have sampled 1000 measurements and computed the mean and the
standard deviation of validation loss/perplexity for each stage. As we can see, the larger number of stages, the smaller
loss/perplexity.

Table 4: Changes in Measurements for Each Stage.

Architecture Type Stage 1 Stage 2 Stage 3 Stage 4

CNN (Valid loss) 8.21± 26.76 3.01± 8.48 2.48± 3.55 2.37± 1.13
RNN (Valid perplexity) 340.65± 239.84 207.30± 56.74 - -

12

A.4 Architecture Found from Our Experiment

A.4.1 Compressive sensing-based Neural Architecture Search (CoNAS) for RNN

x_{t}
0

h_{t-1}

1

tanh

relu

identity 2
identity

8

identity

relu

identity

7sigmoid

h_{t}3relu
5relu

relu

4relu

6identity

sigmoid
identity

identity tanh

Figure 4: Recurrent Cell found from CoNAS

A.4.2 Random Search with Weight-Sharing (RSWS) for CNN

c_{k-2}
0max_pool_3x3

avg_pool_3x3

sep_conv_3x3

sep_conv_5x5

1

sep_conv_5x5 3

avg_pool_3x3

c_{k-1}

sep_conv_3x3

skip_connect

sep_conv_3x3

2max_pool_3x3

skip_connect

sep_conv_3x3

skip_connect
max_pool_3x3

c_{k}

max_pool_3x3

sep_conv_3x3

avg_pool_3x3

sep_conv_3x3

(a) Normal Cell

c_{k-2}

0
avg_pool_3x3

sep_conv_5x5

1
sep_conv_3x3

2
sep_conv_3x3

sep_conv_5x5

3

avg_pool_3x3

c_{k-1}

skip_connect

max_pool_3x3

avg_pool_3x3

sep_conv_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5 c_{k}

sep_conv_5x5

max_pool_3x3

skip_connect

sep_conv_5x5

(b) Reduce Cell

Figure 5: Convolutional cell found from RSWS with search space in Section 3

13

A.4.3 Differentiable Neural Architecture Search (DARTs) for CNN

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

2
skip_connect

3skip_connect

c_{k-1}
sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}
sep_conv_3x3

(a) Normal Cell

c_{k-2} 0avg_pool_3x3

c_{k-1}

max_pool_3x3
1

avg_pool_3x3

skip_connect 2

skip_connect

3skip_connect
c_{k}

skip_connect

skip_connect

(b) Reduce Cell

Figure 6: Convolutional Cell found from DARTs with the original setting in [8].

14

A.4.4 Randomly Wired CNN Architectures

c_{k-2}

0

sep_conv_5x5 1

sep_conv_3x3

c_{k-1} sep_conv_3x3

sep_conv_5x5

2

sep_conv_3x3

skip_connect

skip_connect

sep_conv_3x3

3

avg_pool_3x3

c_{k}

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

sep_conv_5x5

avg_pool_3x3

(a) Normal Cell

c_{k-2} 0

avg_pool_3x3

sep_conv_3x3
sep_conv_5x5

1

avg_pool_3x3
3

sep_conv_3x3

c_{k-1} avg_pool_3x3

2
avg_pool_3x3

sep_conv_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

c_{k}
avg_pool_3x3

skip_connect
skip_connect

skip_connect

(b) Reduce Cell

Figure 7: Randomly wired cell corresponding to the first row result to Table 2.

15

c_{k-2}

0
avg_pool_3x3

skip_connect

sep_conv_5x5

3

sep_conv_3x3

c_{k-1}

sep_conv_5x5

1

avg_pool_3x3

skip_connect

sep_conv_5x5

skip_connect

avg_pool_3x3

skip_connect

2
max_pool_3x3

sep_conv_3x3

avg_pool_3x3

c_{k}avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

(a) Normal Cell

c_{k-2}

0
skip_connect

sep_conv_5x5

1

avg_pool_3x3

2

avg_pool_3x3

skip_connect

3

sep_conv_5x5

c_{k-1}

sep_conv_3x3

max_pool_3x3

sep_conv_3x3

sep_conv_5x5

skip_connect

sep_conv_5x5

skip_connect

skip_connect
skip_connect

max_pool_3x3

c_{k}

max_pool_3x3

sep_conv_5x5

skip_connect

max_pool_3x3

avg_pool_3x3

sep_conv_3x3

(b) Reduce Cell

Figure 8: Randomly wired cell corresponding to the second row result to Table 2.

16

c_{k-2} 0sep_conv_3x3

2
sep_conv_5x5

3

sep_conv_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3

sep_conv_5x5

1avg_pool_3x3

c_{k}

max_pool_3x3

max_pool_3x3

avg_pool_3x3

skip_connect

avg_pool_3x3

skip_connect

(a) Normal Cell

c_{k-2}

1
avg_pool_3x3

2

skip_connect

sep_conv_5x5

3sep_conv_3x3

sep_conv_5x5

c_{k-1}

0max_pool_3x3

skip_connect

max_pool_3x3

max_pool_3x3

max_pool_3x3

max_pool_3x3

max_pool_3x3

avg_pool_3x3

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_5x5

sep_conv_3x3

(b) Reduce Cell

Figure 9: Randomly wired cell corresponding to the third row result to Table 2.

17

A.4.5 Random Search with Weight-Sharing (RSWS) for RNN

x_{t}
0

h_{t-1}

1relu

2
tanh

7
tanh

3
tanh

5sigmoid h_{t}

4sigmoid

6relu

8tanh

Figure 10: Recurrent cell found from RSWS allocating equal amount of search time to CoNAS

18

	1 Introduction
	2 Background
	3 Proposed Algorithm: CoNAS
	4 Experiments and Results
	4.1 CIFAR-10
	4.2 Penn Treebank
	4.3 Discussion

	A Appendix
	A.1 Detailed Background of One-Shot Neural Architecture Search
	A.2 Theoretical Support for CoNAS
	A.3 Effect of Multiple Stages Sampling
	A.4 Architecture Found from Our Experiment
	A.4.1 Compressive sensing-based Neural Architecture Search (CoNAS) for RNN
	A.4.2 Random Search with Weight-Sharing (RSWS) for CNN
	A.4.3 Differentiable Neural Architecture Search (DARTs) for CNN
	A.4.4 Randomly Wired CNN Architectures
	A.4.5 Random Search with Weight-Sharing (RSWS) for RNN

