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Abstract

Deep neural networks are increasing being deployed for au-
tomating plant stress identification and quantification. How-
ever, as this area grows in importance, alleviating privacy
concerns of practitioners becomes a major challenge. In this
paper, we present a deep learning framework for plant stress
phenotyping that guarantees privacy to both the owner of
the data, as well as the developer of the model. Our frame-
work leverages recent advances in deep neural network de-
sign for accelerated private inference (PI) using secure mul-
tiparty communication. We showcase our framework on a
large-scale image dataset, demonstrate that our newly de-
signed models enjoy nearly 2 orders of magnitude speedup
in inference time over state-of-the-art baselines.

Introduction
Plant diseases negatively impact yield potential of crops
worldwide, reducing the average annual yield, for instance
of soybean by an estimated 11% in the United States. How-
ever, disease scouting and phenotyping techniques rely on
human scouts and visual ratings. Deep learning promises
to automate this labor intensive process by leveraging the
availability of massive image datasets acquired in the field.
Specifically, these datasets can be used to train deep neural
network models that can accurately predict the presence/ab-
sence and nature of disease stress in crops from digital im-
age data alone. This promise has begun to be realized in the
community via a series of exciting recent works (Pound et al.
2017; Singh et al. 2016; Ghosal et al. 2018).

However, despite these advances, this research direction
faces a looming challenge. In order for neural network-based
phenotyping to be widely accepted by agricultural practi-
tioners, the twin issues of privacy and trustworthiness need
to be addressed. Typically, image data collection is done by
individual field users, while model building and digital phe-
notyping are done in the data processing divisions of ag-tech
companies. However, field users may not wish to entrust
their data to a service provider. At the same time, ag-tech
companies may not want to share their deep neural network
models (potentially trained at enormous financial and human
capital expense), with individual users.

Private inference (PI) provides a solution to this chal-
lenge. The high level idea is to guarantee both user and
model privacy using cryptographic techniques (Juvekar,

Vaikuntanathan, and Chandrakasan 2018; Mishra et al.
2020a). A typical private inference pipeline involves se-
cure multi-party computation (MPC). At a high level, the
goal is to prevent both users and companies from learn-
ing anything about each other’s parameters. PI techniques
thus far reported in the literature have leveraged a range
of cryptographic protocols, including homomorphic encryp-
tion (HE), additive secret sharing (SS), and garbled circuits
(GC). However, a major barrier to widespread deployment
of PI is that these all incur heavy computational overheads,
resulting in several orders-of-magnitude increase in infer-
ence latency compared to standard “plaintext” inference.

The reason for this severe overhead is somewhat curious:
non-linear operations in deep models, like the well-known
Rectified Linear Unit (ReLU), turn out to be the key bot-
tlenecks. For example, in DELPHI (Mishra et al. 2020a), a
state-of-the-art PI protocol for deep network inference, it is
known that ReLUs account for 93% of ResNet32’s online
runtime (Jha et al. 2021). This is in direct contrast to stan-
dard (plaintext) inference where ReLUs are effectively free,
and the dominant runtime costs are due to the floating-point
operations of convolutional and fully-connected layers.

In this short paper, we design several novel deep neural
network architectures for plant stress phenotyping, specially
geared towards preserving privacy of both the user and ser-
vice provider. The key distinction from standard deep archi-
tectures (e.g. VGG, or ResNets) is that our models have a
minimal number of nonlinear operations (such as ReLUs)
but still achieve near state-of-the-art accuracy. Because our
models are ReLU-efficient, efficient private inference using
cryptographic protocols can be achieved. Our framework
leverages SPHYNX, a new algorithm for designing ReLU-
efficient convolutional cells that maximize overall network
accuracy under a ReLU budget (Cho et al. 2021).

We demonstrate the effectiveness of SPHYNX using a
large-scale image dataset of approximately 16,000 image
samples of plant stress (Nagasubramanian et al. 2020). Base-
line deep network models for this dataset have been demon-
strated to achieve over 90% accuracy, but each private infer-
ence through these deep models may take hundreds of sec-
onds. Our new models exhibit nearly SOTA accuracy, yet
can perform private inference in less than 2 seconds. To the
best of our knowledge, these constitute the first results for
privacy-preserving models for plant stress phenotyping.



Background on Private Inference
Consider a two-party communication system where the goal
is to perform inference (say, classification) on the server’s
deep neural network model with the client’s input data. The
client wishes to keep their data private, while simultaneously
the server desires to keep their model parameters secret
from the client. Private inference techniques set up a pro-
tocol for back-and-forth communication such that the server
learns nothing about the client’s input, the clients learn noth-
ing about the server’s model, and in the end both parties
are able to access the results of the inference. We adopt a
common threat model from prior work in the private infer-
ence (Liu et al. 2017; Juvekar, Vaikuntanathan, and Chan-
drakasan 2018; Mishra et al. 2020b) where both participants
are honest-but-curious. At a high level, both parties follow
the protocol faithfully, but within the protocol may try to in-
fer information about the other party’s input/model from the
protocol’s transcripts.

The SPHYNX framework focuses on the DELPHI cryp-
tographic protocol (Mishra et al. 2020b) for private infer-
ence. DELPHI builds on three cryptographic primitives: se-
cret sharing (SS) and homomorphic encryption (HE), for lin-
ear operations, and garbled circuits (GC) for non-linear op-
erations. We begin by briefly reviewing these cryptographic
primitives.
Additive Secret Sharing (Shamir 1979) allows two parties
to hold additive shares [x]1, [x]2 of a secret value x ∈ Fp

(defined over a finite field Fp where p is a large prime) such
that [x]1 + [x]2 = x. These additive shares can be generated
by sampling a random element r ∈ Fp and setting [x]1 = r
and [x]2 = x− r.
Homomorphic Encryption (Gentry and Halevi 2011) en-
ables operations on encrypted values without a private key
or decryption. A cryptosystem supports a homomorphic op-
eration (∗) if for public key (pk), secret key (sk), and cipher-
texts c1 = Enc(pk,m1), c2 = Enc(pk,m2), there exists a
function EVAL such that Dec(sk, EVAL(c1, c2)) = m1∗m2.
Garbled Circuits (Yao 1986) is a scheme introduced by
Yao (Yao 1986) that allows two parties to compute a Boolean
function f on their private inputs without revealing their in-
puts to each other. The function f is first represented as a
Boolean circuit of two-input logic gates. One of the parties
(the garbler) encodes (garbles) the circuit by encrypting the
truth table of each gate in the circuit and sends the resulting
“garbled circuit” to the other party (the evaluator). The eval-
uator, computes (or decrypts) the circuit gate-by-gate using
encodings of the garbler’s inputs and her own inputs, pro-
ducing an encoding of the circuit’s output. She shares this
encoding with the garbler, who then reveals the correspond-
ing plaintext.
The Delphi Protocol (Mishra et al. 2020a) is a hybrid pro-
tocol that combines the above cryptographic primitives for
performing inference with networks with linear and ReLU
layers. A description of the protocol is shown in Figure 1,

DELPHI proceeds in two stages: the preprocessing phase
and the online phase. During the preprocessing phase, the
client and the server precomputes input independent data
that can be used in the online phase. We go over the pre-
computation procedures for the linear layers and non-linear

Figure 1: DELPHI protocol illustration (Cho et al. 2021):
DELPHI leverages HE (preprocessing) and SS (online) for
the linear layers, and GC for ReLU layers. Note that pre-
processing computations are independent to clients’ inputs
and can be precomputed. Online computation time for lin-
ear layers is approximately the same as the plaintext com-
putation; ReLU operations involve expensive online crypto-
graphic computations from GCs, which form the major com-
putational bottleneck.

layers: (1) the client obtains a public key pk and a pri-
vate key sk from a randomized algorithm; (2) considering
the server’s model with L layers where Wi is the ith lay-
ers parameters and i ∈ {0, . . . , L − 1}, the client and the
server samples random vectors ri ∈ Fn

p and si ∈ Fn
p , re-

spectively; (3) the client encrypts riwith public key pk and
sends Enc(pk, ri) to the server; (4) the server computes
Enc(pk,Wiri − si) homomorphically, and send it back to
the client; (4) the client decrypts this ciphertext using the
secret key sk and obtains Wiri − si; (5) the server gar-
bles the circuit C̃ for each ReLU in the network and send
it to the client, along with labels corresponding to ri+1 and
Wiri − si.

During the online phase, DELPHI leverages the different
cryptographic primitives depending on linear operations or
non-linear operations. In linear layers, the client computes
and sends xi − ri to the server. The client and server now
hold secret shares of the client’s input xi, or equivalently, the
first layer’s inputs. The server then computes Wi ·(xi−ri)+
si, its own share of the ith layer’s output. In non-linear layers,
especially ReLU, the server sends the encoding of Wi.(xi−
ri)+si to the client, who is now able to evaluate the garbled
circuit and send the encoded output to the server. The server
decodes the garbled circuit output, which is xi+1−ri+1, the
server’s share for the next linear layer.

From the above discussion, we can observe that during
the online phase of private inference, computation involv-
ing linear layers in the network are effectively the same cost
as standard (plaintext) computation. On the other hand, op-
erations involving ReLU (or max-pool) layers use garbled
circuits that require expensive online crpytographic compu-
tations and interaction between parties, resulting in high la-
tency. This motivates the need for neural architectures that
judiciously minimize ReLU computations. We next describe
a recent framework, SPHYNX, which serves this need.



The SPHYNX Framework
To design new ReLU-efficient networks, we will use SPH-
YNX, a new network design approach presented in (Cho
et al. 2021). SPHYNX is a micro-search technique, i.e., it dis-
covers cell architectures that can be repeated several times
to form deep networks. As is typical for micro-search meth-
ods, there are two types of cells being designed: normal
cells that preserve feature map size, and reduce cells that
decrease feature resolution. At a high level, SPHYNX con-
sists of two main innovations: (i) a new ReLU-efficient cell
search space, which can be combined algorithmic with any
existing neural architecture search (NAS) methods to dis-
cover promising cell architectures; (ii) a new stochastic opti-
mization method to discover optimal the locations of reduce
cells in terms of layer depth.

SPHYNX: Search Space
SPHYNX ues a new ReLU-efficient search space which will
influence later search strategies. We start with the traditional
DARTS search space (Liu, Simonyan, and Yang 2018),
which can be viewed as a multigraph with nodes (represent-
ing feature maps) and edges (representing operations such
as different types of convolution, pooling, and so on). Tradi-
tional NAS techniques aim to select the best sub-graph that
maximizes test accuracy.

To this search space, we make a few changes. First,
we eliminate the ReLU layer from convolution operations
so each ReLU-Conv-BN sequence is now simply a Conv-
BN sequence. We also replace separable convolutions with
vanilla convolutions, since they tend to be more expres-
sive. We also remove all max-pooling operations since these
are also nonlinear operations that require expensive GCs to
compute. Therefore, the only non-linearity in our new SPH-
YNX search space is a ReLU layer at the output of each cell.
In addition, SPHYNX follows the ReLU balancing rule intro-
duced in CryptoNAS (Ghodsi et al. 2020). Unlike conven-
tional FLOP balancing methods which doubles the channel
size when the spatial resolution is halved, ReLU balancing
quadruples channel size in order to distribute ReLU equally
across layers.

SPHYNX: Search Phase
Finding cells. Having defined the search space, we now
discover normal/reduce cells using the DARTS micro-cell
search algorithm. The choice of DARTS here is entirely for
convenience, and we should emphasize that SPHYNX can be
used in conjunction with any other search method such as
ENAS (Pham et al. 2018), GDAS (Dong and Yang 2019),
PC-DARTS (Xu et al. 2020), and GAEA (Li et al. 2021);
the best choice of NAS method is left as future work.
Learning optimal location of reduce cells. If the overall
network has D cell layers, conventional cell-based NAS ap-
proaches, including DARTS, fix the position of reduce cells
at D/3 and 2D/3 cell-depth index. In contrast, we propose
a method to find the optimal position of reduce cells to im-
prove network performance.

We focus on the case with two reduce cells; extending this
to more than two reduce cells is straightforward. Given a net-
work with D cells, let β ∈ RK be a position indicator vector

Figure 2: Illustration of the Gumbel-softmax trick applied to
searching reduce cell location. We randomly sample a can-
didate network from categorical variable β, and only train
the sampled network for a given batch. In this figure, for this
iteration our algorithm samples Network 2 and the sampled
network weights and categorical variable β.

where K=
(
D
2

)
is the number of all possible choices of re-

duce cell locations, and let β̂ = softmax(β) = exp βi∑
k exp βk

be
a probability distribution over K elements.

Define a categorical random variable with distribution β̂
and encoded by random one-hot vectors g ∈ {0, 1}K . We
construct a “super” network as shown in Figure 2. Let fi,
where i ∈ {1, 2, . . . ,K} be a function parameterized by
weights wi; we can imagine fi to represent candidate net-
works with different locations of reduce cells. The output F
computes the linear combination F = g1f1 + . . . + gkfk.
Intuitively, F samples one branch according to g.

One can imagine learning the optimal indicator vector β
via gradient descent; unfortunately, the sampling operation
is not differentiable. Therefore, we leverage the Gumbel-
softmax trick (Jang, Gu, and Poole 2017). During the for-
ward pass, we sample a one-hot vector according to the for-
mula:

g = one-hot( argmax
i∈{1,2,...,K}

Gi + log(β̂i)) (1)

where Gi ∼ Gumbel(0, 1) i.i.d samples drawn from the
standard Gumbel distribution. During the backward pass, we
use the straight-through Gumbel softmax estimator which
replaces g with g̃ during the gradient update:

g̃i =
exp (log gi +Gi)/τ∑
k(exp (log gk +Gk))/τ

(2)

where τ is a temperature parameter. The parameter τ con-
trols the sharpness of the softmax approximation; g̃ = g
as τ → 0, whereas g̃ becomes an uniform distribution as
τ → ∞. Equipped with a fully differentiable technique for
learning the parameter β, we now train both the network pa-
rameters w and categorical parameter β.

Once the training terminates, we select the positions of the
reduce cells in the final network looking at the peak achieved
by the categorical distribution (without any Gumbel sam-
pling): g = one-hot(argmaxi∈{1,2,...K} log(β̂i)).

Experimental results
We now show the effectiveness of SPHYNX for designing
ReLU-efficient networks for plant stress phenotyping.
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Figure 3: GradCaM outputs for various models. Each row’s class from top to bottom corresponds to Bacterial Blight, Frogeye
Leaf Spot, and Iron Deficiency Chlorosis, respectively.

Figure 4: Sample images from each class in our dataset.
These classes cover a diverse spectrum of biotic and abiotic
foliar stresses.

Dataset. We report results on a large-scale image dataset
consisting of 16,573 RGB images of soybean [Glycine max
L. (Merr.)] leaves across nine different classes (i.e., eight
different soybean stresses, and the ninth class containing
healthy soybean leaves). More details on the imaging setup
and dataset collection can be found in (Ghosal et al. 2018).
Briefly, these classes cover a diverse spectrum of biotic and
abiotic foliar stresses in soybean. Figure 4 illustrates the nine
different soybean leaf classes used in this study.

Results Table 1 shows accuracy and online runtime val-
ues of several networks obtained using our approach. For
comparisons, we show two baseline models (VGG-11 and
ResNet-18) which achieve SOTA accuracy of > 93% on
our dataset. However, note that these models are extremely
ReLU heavy, and therefore private inference on these mod-
els incurs a latency of hundreds of seconds per test image,
which is far too slow in terms of user experience. Simple
channel- and feature-map scaling of the original models can
be performed to reduce the latency to 3-5 seconds, but with
significant accuracy drop.

In contrast, the networks designed by SPHYNX demon-

Table 1: Test accuracy and PI latency results.

Architecture ReLUs Test Acc. PI Online Lat.
SPHYNX 94K 87.73% 2.012s
SPHYNX 157K 89.29% 3.344s

VGG11 164K 80.14% 3.451s
VGG11 240K 88.75% 5.045s

VGG11 (original) 9642K 93.98% 202.49s

ResNet18 165K 78.58% 3.472s
ResNet18 265K 86.64% 5.575s

ResNet18 (Original) 6523K 93.32% 136.47s

SPHYNX-Normal Cell

SPHYNX-Reduce Cell

Figure 5: Normal and reduce cells found by SPHYNX.

strate an accuracy of nearly 90%, but only require approx-
imately 100K ReLUs, and a runtime of 2-3 seconds. This
represents 2 orders of magnitude speedup in online private
inference runtime, and our networks conceivably can be de-
ployed in practice. Figure 5 displays the structure of the nor-
mal and reduce cells found using our algorithm.

In Figure 3 we also display interpretability maps achieved
using the different models. We observe that while the mod-
els from SPHYNX achieve excellent test accuracy, the inter-
pretability maps appear quite different from baseline meth-
ods. Understanding the role of architecture for interpreting
the functioning of various models is left for future work.
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