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Abstract
We consider problems in learning-based design subject to
constraints specified in the form of Dynamic Programming
(DP). Recent work from Mensch and Blondel (2018) pro-
poses the use of a differentiable DP operator, therefore en-
abling DP constraints to be used in conjunction with gradient-
based learning. In this paper, we introduce a differentiable
technique called soft-DP that can be used to solve target-
matching problems using gradient-based methods. Our tech-
nique also enables backpropagating “through” DP solutions
that obey a piecewise-linear structure. To validate our ap-
proach, we report results from three showcase applications –
game design, histogram approximation, and materials design
– where our approach improves over data-heavy alternatives.

Motivation
Gradient-based learning has underpinned many of the

considerable advances made in artificial intelligence and
machine learning over the last decade. Correspondingly, sig-
nificant attention has been devoted to creating differentiable
modules that solve optimization problems. These are com-
monly used either as loss functions or as “layers” within
larger models (Amos and Kolter 2017; Wang et al. 2019;
Lample et al. 2016; Mensch and Blondel 2018).

In this paper, we focus on Dynamic Programming (DP),
a fundamental algorithmic technique for finding efficient
solutions to combinatorial optimization problems (Bellman
1957). We develop a differentiable DP approximation, that
we call soft-DP, to design algorithms that can solve de-
sign problems involving dynamic programming using gra-
dient updates. In some design problems, finding a solution
requires not just minimizing or maximizing DP-defined at-
tributes, but having them match specific target values. We
show how to adapt soft-DP for target-matching, and also
show how soft-DP enables approximating gradients of solu-
tions to DP problems that exhibit piecewise output structure.

Our numerical experiments confirm the effectiveness of
soft-DP in three showcase applications: (i) game level de-
sign, (ii) histogram-approximation, and (iii) material mi-
crostructure reconstruction, and improvement over data-
heavy methods that involve training neural network surro-
gates for gradient computation.
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Preliminaries
Let us set up some notation. Denote [n] = {1, 2, . . . , n}

as an index set. Let ∆d be the probability simplex of dimen-
sion d. For ordered graphs, we use Pi and Ci to denote the
set of parent nodes and child nodes for node vi.

Differentiable Dynamic Programming
Dynamic Programming (DP) is a family of algorithms

that can be used to efficiently solve many combinatorial op-
timization problems. DP algorithms exploit the existence
of overlapping sub-problems by storing the solutions to
these sub-problems for later use (Bellman 1957). All DP
approaches can be formulated as operations on a Directed
Acyclic Graph (DAG) with topologically ordered nodes
v1, .., vn and edge weights θ ∈ RN×N . The solution to the
original problem then reduces to finding the optimal path on
this graph that maximizes (or minimizes) the sum of edge
weights. This can be done through the following recursion:

v1(θ) , 0 (1)
∀i ∈ {2, ..., N} : vi(θ) , max

j∈Pi

θij + vj(θ) (2)

The final output V (θ) , vN (θ) is the optimal cost and
can be shown to be the same as a result obtained by perform-
ing an exhaustive search over all possible paths. By storing
the maximizing index for each step, the solution of the dy-
namic program can then be reconstructed through backtrack-
ing from the final node of the graph, giving the optimal path.

The mapping V (θ): RN×N→ R is non-differentiable
wherever the solution is not unique; however, previous work
(Mensch and Blondel 2018) has devised a method for com-
puting a differentiable approximation by adding a strongly-
convex regularizer to each of the recursive updates. For an
arbitrary regularizer Ω, they leverage the smoothed max op-
erator maxΩ(x) introduced by (Nesterov 2005), defined as
follows:

max
Ω

(x) = max
q∈∆|x|

〈q,x〉 − Ω(q) (3)

Unlike the regular max operator, this smoothed version
is continuously differentiable everywhere. By substituting
it into the recursive updates in Equation 2, we can define
a smooth DP approximator VΩ(θ) with gradients ∇θVΩ(θ)
that are guaranteed to exist. The approximation is also prin-



cipled in the sense that limα→0 VαΩ(θ) = V (θ) for any
choice of Ω.

In this paper we focus on using the negative entropy
regularizer Ω, which yields the well-known softmax func-
tion (Bridle 1990). Note that for DP problems that call
for minimization over arguments, it is straightforward to
define an analogous smoothed min operator: minΩ(x) ,
−maxΩ(−x).

To allow the computation of input gradients ∇θVΩ(x) in
the backward pass, the maximizing q vectors from (3) must
be stored in the forward pass, with qi denoting the maxi-
mizing argument used to compute vi. Together, these define
transition probabilities for a random walk on the input graph,
starting from the final node and working backwards. The
backward pass consists of backtracking through the DAG
to compute the marginal probability of each node and edge
being visited during this random walk. The marginal proba-
bility of each edge being visited is equivalent to the gradient
of VΩ(θ) with respect to that edge.

Differentiable k-Histogram Approximation
Given a signal x ∈ Rn, a k-histogram approximation of x

is obtained via piecewise constant regression problem, i.e.,
the signal x is approximated by a set of k constant segments.
Jagadish et al. (1998) leverages a dynamic programming ap-
proach to solve the k-histogram approximation withO(kn2)
time complexity.

Denote the function h : Rn → Rn as the map from a
given time-series signal to its k-histogram approximation
via dynamic programming approach. Cho et al. (2021) es-
timates an analytic, closed-form form of the Jacobian of h
by leveraging the partition of [n] produced from DP. For-
mally, let Π = {B1, . . . ,Bk} denote any partition of [n].
The dynamic programming approach equivalently solves the
following optimization problem:

min
B1,...,Bk

k∑
i=1

∑
j∈Bi

(xj −
1

|Bi|
∑
l∈Bi

xl)
2

Cho et al. (2021) showed that the (weak) Jacobian ∂h/∂x
forms the block-diagonal matrix J ∈ Rn×n:

J =

J1 · · · 0
...

. . .
...

0 · · · Jk


where all entries of each block Ji ∈ R|Bi|×|Bi| are equal to
the reciprocal of the number of elements in Bi.

Our Proposed Approach
Target matching. We consider design problems where the
design variable x is defined such that some attribute V (x)
— which is computed using dynamic programming — has
to be equal to a desired value, while potentially satisfying a
number of other constraints.

The mapping x 7→ V (x) is typically non-differentiable,
and therefore one we need to resort to alternatives. One ap-
proach would be to train a neural network as a surrogate
for V (x) and leveraging automatic differentiation. But this,
of course, requires an potentially large auxiliary dataset of

(x, V (x)) labeled training samples.
Alternatively, we could add a strongly convex regular-

izer into the DP-objective as in (Mensch and Blondel 2018).
However, the drawback is that this approximation introduces
bias to the optimal cost. Specifically, the outputted cost ap-
proximation will be greater than the true value when per-
forming a minimization over arguments (the opposite will be
true when performing a maximization). While Mensch and
Blondel (2018) are able to bound this error |V (x)−VΩ(x)|,
their guarantees involve a linear dependence on the num-
ber of DP steps needed for the computation. In practice,
some dynamic programs (such as in our experiments on Mi-
crostructure Design) require a very large number of steps,
resulting in extremely inaccurate output values. This poses
a challenge in design settings where we wish to use the dif-
ferentiable DP approach of Mensch and Blondel (2018).

Let us illustrate this. Consider the general case in which
we would like to update an input x using gradient descent
over the squared error L(x) = 1

2 (V (x) − c)2. To get a dif-
ferentiable loss, we first replace V with VΩ. Using the chain
rule, the gradient of this loss with respect to x can be written
as:

∇xL(x) =
∂L

VΩ(x)
∇xVΩ(x),

= (VΩ(x)− c)∇xVΩ(x) (4)
Here we can see that the inaccuracy of VΩ creates prob-

lems as the term (VΩ(x) − c) may not be of the same mag-
nitude – or even the same sign as (V (x) − c) – preventing
V (x) from ever converging to c.

We propose the following. we need to use both V and VΩ

to accurately compute both terms in the right hand side of
Equation 4. The key lies in observing that even when we
cannot assume that VΩ(x) ≈ V (x), we can still use ∇VΩ to
update the value of V . We can use an exact DP algorithm V
to figure out which direction the attribute needs to be shifted,
and then by taking the gradient of VΩ to determine how to
shift x. For each forward pass we then compute both V (x)
and VΩ(x) and use these to compute the approximate gradi-
ent:

∇xL(x) ≈ (V (x)− c)∇xVΩ(x) (5)
We call this debiased soft-DP and show below that this

gradient approximation can effectively be used to optimize
the true loss (V (x)− c)2.

Gradients of solutions. In several problems, we are in-
terested in finding inputs to a DP problem which meets a
target output solution. For instance, consider the histogram
approximation function h : Rm → Rm which maps a sig-
nal x ∈ Rm to its optimal k-histogram approximation. If we
use the gradient of h to incrementally update a signal x to
minimize L(x) = ||h(x) − c||22, then the optimal cost may
be less informative than the actual approximation itself.

To solve the “gradient of solutions” problem, (Mensch
and Blondel 2018) propose using the Hessian of V . How-
ever, this gives the gradient of a solution that is described
by probabilities over edges in the DAG corresponding to the
DP. This is useful for some problems, but it is not clear how



Algorithm 1: Forward pass
Input: Edge Weights θ ∈ RN×N
Parameter: Regularization strength Ω
Output: Approximation of Optimal Cost v̂ ∈ R, Local gra-
dients Q ∈ RN×N

1: Initialize V ∈ RN
2: Initialize Q ∈ RN×N
3: V1 ← 0
4: for i=1,...,N do
5: Initialize Options ∈ RN
6: for j = 1, ..., N do
7: if j ∈ Pi then
8: Optionsj ← θji + Vj
9: else

10: Optionsj ←∞
11: end if
12: end for
13: Qi ← MinΩ(Options)
14: Vi ← Qi · Options
15: end for
16: return VN , Q

to use this solution gradient to relax the actual output of the
solution for problems which require reconstructing an output
from the DAG solution. For example, computing the output
of h requires averaging over the partitions discovered us-
ing DP. This is straightforward when the DP gives a single
optimal path but is difficult to define when there are a com-
binatorial number of paths with non-zero probability.

We show that for a broad class of DP-problems with
piecewise solutions, we can directly compute an approxi-
mation of the solution’s gradient using the original signal x
and the cost gradient E = ∇θV (θ), without explicitly per-
forming any Hessian calculations. In this work, we focus on
the example of piecewise-constant k-histogram approxima-
tion as a simple case, but the extension to more complicated
piecewise-smooth outputs is straightforward.

We start from the observation in (Cho et al. 2020) that for
each bucket B in the optimal approximation, the exact Jaco-
bian of h will have a block of entries equal to 1

|B|2 . We can
view the cost-gradient of each edge weight (i, j) as the prob-
ability of having a bucket spanning the segment which cor-
responds to the edge and therefore the probability of the Ja-
cobian having a block J(i, j) in this location. We can there-
fore compute an approximation of the Jacobian ∂h(x)

∂x by a
weighted sum over the edges of the DAG as denoted in 3. As
the regularization is scaled to zero, this Jacobian converges
to the blockwise DSA Jacobian: limα→0∇xSαΩ(x)=J.

Unlike the DSA method, however, this smoothed solution
gradient does not fix the partition locations before comput-
ing the Jacobian. As a result, this can be used to perturb
inputs in a way that allows the updated version to have dif-
ferent partition locations from the previous one. We show in
our experiments that this gradient formulation permits much
more flexible optimization over inputs when compared to
DSA.

Algorithm 2: Backward Pass - Cost Gradient
Input: Local gradients Q ∈ RN×N , Downstream gradient
∂L
∂v

Output:E = ∂v
∂θ ∈ RNxN , ∂L

∂θij

1: Initialize E ∈ RN×N with zero entries
2: Initialize E ∈ RN with zero entries
3: EN ← 1
4: for i=N-1,...,1 do
5: for j ∈ Ci do
6: Ei,j = Qji ∗ Ej
7: end for
8: Ei =

∑N
j=1Ei,j

9: end for
10: return E, ET ∂L∂v

Algorithm 3: Backward Pass - Reconstruction Gradient
Input: E ∈ RN×N
Parameter: Block Jacobian sub-gradient function J(i, j)
Output: ∂solution∂θ

1: Initialize A ∈ RNxN with zero entries
2: for i = 1, ..., N do
3: for j ∈ Ci do
4: A← A+ EijJ(i, j)
5: end for
6: end for
7: return A

Experiments
Game Design

We first compare the design capabilities of backward-pass
approximation to an optimal forward-pass approximation on
a simple game called Monster Trainer, a shortest path prob-
lem with unknown cost functions first introduced in (Xu
et al. 2020). In that work, Xu et al. (2020) show that Graph
Neural Networks (GNNs) are well suited to learn DP solu-
tions due to the inherent network structure within the DP al-
gorithm. While GNNs are differentiable by design, we con-
duct experiments replacing the GNN to a data-free approx-
imation of Bellman-Ford by leveraging the method in Al-
gorithm 1 and 2. Figure 6a demonstrates that our data-free
approach debiased soft-DP approach outperforms using the
surrogate GNN models proposed in (Xu et al. 2020). We
defer the details of Monster Trainer problem and other addi-
tional results to the Appendix.

Optimal Histogram Differentiation
We consider the following toy design problem. Let x ∈

Rn and y ∈ Rn be an input and a k-histogram approxi-
mation respectively. We consider observing a noisy target
ŷ = y + ε where ε ∼ N(0, σ2). Given the prior that the
target signal y is a k-histogram, to recover y we solve a fol-
lowing optimization problem:

min
x
‖h(x)− ŷ‖22 (6)

and measure the distance between histogram approximation
of the designed (optimal) input, h(x), with the piecewise
constant target signal y.
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Figure 1: Monster Trainer average shortest path lengths on
a batch of 10 randomly sampled levels, updated via gradient
ascent. Higher average shortest path length indicate useful
gradients.
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Figure 2: The comparison of h(x) to the clean target. We ob-
serve Soft-DP achieves the h(x) the most close to the clean
target y. DSA fails to update the input x that the partition
matches to the y. Surrogate models (MLP and CNN) overfit
to the noisy target (ŷ) failing to achieve close `2 distance to
y.

We implement the design using several approximations
for h: Soft-DP, DSA and neural network based surrogate
models: multi-layer perceptron (MLP) and convolution neu-
ral networks (CNN). We freeze the surrogate models’ pa-
rameters when solving the optimization problem in Equa-
tion 6. Our proposed method using Algorithm 3 is able to
update the h(x) close to the clean target while MLP and
CNN overfits to the noisy target. We defer the detailed ex-
perimental setup and results to the Appendix.

We also compare the Jacobian ∂h/∂x between Soft-DP,
DSA, MLP, and CNN given histogram inputs x as shown
in Figure 3. The DSA Jacobian is an analytical form of the
(weak) Jacobian given the histogram approximation, while
Soft-DP adds the probabilistic aspect so that neighboring
block matrices are smoothed out if the truth signal partitions
are close in terms of the value. On the other hand, we ob-
serve that MLP and CNN exhibit noisy Jacobians.

Microstructure Design
We now consider a materials design problem from photo-

voltaics. An important attribute in designing two-phase com-
posite photovoltaic materials (at the microstructural scale) is
conductivity, which involves calculating shortest paths from
given pixel locations to either the top or bottom of the mate-
rial volume through the given domain. Motivated by this, we
train an generative model, specifically InvNet models (Joshi
et al. 2020) (we defer details of InvNet constructions to Ap-

Signal (x) DSA Soft-DP MLP CNN

Figure 3: Jacobian comparisons on various histogram ap-
proximation methodologies. Each row visualize the Jaco-
bian of DSA, Soft-DP, MLP, and CNN given the signal in
the first column. DSA solves the exact Jacobian ∂h/x. We
observe that Soft-DP smooths out the neighboring block di-
agonal matrix if the values in the two given partitions are
close to each other (first row). On the other hand, the second
row shows no smoothing effect on Soft-DP since the differ-
ence in neighboring partitions in x are large.

Figure 4: Generated Microstructures

pendix). We use a dataset of 2-phase microstructures and se-
lected an invariance function f defined as the shortest-path
from the top to the bottom of the image under some pairwise
distance function d, which measures the difference between
adjacent pixel values. Note that in the following definition,
we ensure that p1 is in the first row of the array, p2 is in the
last row, and that ∀i : pi, pi+1 are adjacent to one another
SP (I) = minp1,p2...,ph

∑h−1
i=1 d(Ipi , Ipi+1

). To ensure that
identical pixels would have a distance of 1 and that the dis-
tance increases rapidly as the values diverged, we choose our
distance function as d(x1, x2) = exp((x1 − x2)2).

We define the invariance function via Algorithm 1 and 2.
Each microstructure image is of size 64 × 64, making for
a total of 212 DP updates. Due to the high number of DP
updates needed to compute SPΩ, we found it necessary to
use our proposed debiased soft-DP approach to ensure ac-
curate gradients. This setting gives us an opportunity to test
whether the soft-DP gradients can be used to train deep neu-
ral networks in addition to the simple input updates we’ve
seen previously.

Our experiments show that the shortest-path relaxation
is effective in reducing the invariance cost (c − SP (x))2,
meaning that the generator is able to learn to output samples
with specified shortest-path values. Increasing the penalty
coefficient for the DP-based loss further ensures that the
generator obeys the control input as shown in Figure 4. We
defer additional experimental results to the Appendix. Our
code can be found here.

https://github.com/NYU-DICE-Lab/graph_invnet
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Differentiable Dynamic Programming
Dynamic Programming (DP) is a class of methods that

can efficiently solve many combinatorial optimization prob-
lems that would otherwise not be solvable in polynomial
time. DP algorithms exploit the existence of overlapping
sub-problems by storing the solutions to these sub-problems
for later use (Bellman 1957). All DP approaches can be for-
mulated as operations on Directed Acyclic Graphs (DAGs),
with topologically ordered nodes v1, .., vn and edge weights
θ ∈ RN×N (In the case where each node’s degree is
bounded by some constant D, we equivalently have θ ∈
RN×D). The problem then reduces to finding the optimal
path along with the graph, which maximizes (or minimizes)
the sum of edge weights. This can be done through the fol-
lowing recursive computation:

v1(θ) , 0 (7)
∀i ∈ [2, ..., N ] : vi(θ) , max

j∈Pi

θij + vj(θ) (8)

The final output V (θ) , vN (θ) is the optimal cost and
can be shown to be the same as a result obtained by perform-
ing an exhaustive search over all possible paths. By storing
the maximizing index for each step, the solution of the dy-
namic program can then be reconstructed through backtrack-
ing from the final node of the graph, giving the optimal path.

Although this mapping V (θ) : RN×N → R is non-
differentiable wherever the solution is not unique, previ-
ous work (Mensch and Blondel 2018) has devised a method
for computing a differentiable approximation by adding a
strongly convex regularizer to each of the recursive updates.
For an arbitrary regularizer Ω, they leverage the smoothed
max operator maxΩ(x) introduced by (Nesterov 2005),
which is defined as follows:

max
Ω

(x) = max
q∈∆|x|

〈q, x〉+ Ω(q) (9)

Unlike the regular max operator, this smoothed version
is continuously differentiable everywhere, and by substitut-
ing it into the recursive updates in Equation 2, we can define
a smooth DP approximator VΩ(θ) with gradients ∇θVΩ(θ)
that are guaranteed to exist. The approximation is also prin-
cipled in the sense that limα→0 VαΩ(θ) = V (θ) for any
choice of Ω. In this work we focus on using negative en-
tropy as the regularizer Ω, which yields the well-known soft-
max function (Bridle 1990). However, (Mensch and Blondel
2018) also shows L2 regularization to be useful for encour-
aging sparsity. For DP problems that call for minimization
over arguments, it is straightforward to define an analogous
smoothed-min operator minΩ(x) , −maxΩ(−x).

To allow the computation of input gradients ∇θVΩ(x) in
the backward pass, the maximizing q vectors from (3) must
be stored in the forward pass, with qi denoting the maxi-
mizing argument used to compute vi. Together, these define
transition probabilities for a random walk on the input graph,
starting from the final node and working backwards. The
backward pass consists of backtracking through the DAG
to compute the marginal probability of each node and edge
being visited during this random walk. The marginal proba-

bility of each edge being visited is equivalent to the gradient
of VΩ(θ) with respect to that edge.

In addition to this methodology for relaxing the cost of
the DP, (Mensch and Blondel 2018) also show that the solu-
tion of the dynamic program can be relaxed and that its gra-
dient with respect to the input is equivalent to the Hessian
matrix of VΩ(θ). Rather than explicitly computing the Hes-
sian, however, they use a variation of Pearlmutter’s method
(Pearlmutter 1994) to only compute the product of the Hes-
sian with a specific matrix to get the derivative in that direc-
tion.

Game Design
We first compare the design capabilities of backward-pass

approximation to an optimal forward-pass approximation on
a simple game called Monster Trainer, first introduced in
(Xu et al. 2020). The input is a set of monsters, each rep-
resented by a 2-dimensional location h ∈ [0, 10]2 and a
c ∈ [1, 10]. Starting at a random location with level 0, the
trainer can advance to level n by challenging the monster
with combat level n, but incurs a cost equal to the dis-
tance from their current location to the monster multiplied
by their difference in levels. After challenging the monster,
the trainer then moves to its location. The game ends when
the trainer reaches the target level provided to them at the
beginning of the game.

The minimum cost needed to complete a level of Mon-
ster Trainer can be found using the Bellman-Ford algorithm
for shortest paths (Bellman 1958), a DP computation. How-
ever, (Xu et al. 2020) also show that Graph Neural Networks
(GNNs) are extremely well-suited to solve this problem,
given sufficient input and output examples. They argue that
because the GNN computational structure resembles that of
a DP algorithm, GNNs can easily generalize from examples
to learn the DP function. As evidence of this, they are able
to train a GNN on randomly generated levels of the Mon-
ster Trainer game, achieving minimal validation loss (MSE
of 0.564 on test set).

Because GNNs are differentiable by design, they admit
an input gradient which can be easily computed using back-
propagation alone without any approximation in the back-
ward pass. In our experiment, we measure the usefulness of
this GNN gradient compared to a data-free approximation of
Bellman-Ford. This makes for a compelling comparison as
the GNN has learned the update rules of Bellman-Ford and
the differentiable DP method has directly relaxed the very
same updates through entropy regularization.

For each gradient approximation, we test its ability to cre-
ate Monster Trainer levels whose minimum cost to comple-
tion meets a designers’ specifications. To do this, we begin
with a random game level and shift each monsters’ coordi-
nates in accordance with the gradient of the shortest path.
6a shows the effect of using gradient ascent to increase the
shortest path values and 6b shows the results of using gradi-
ent descent to decrease them.

Our results show that gradients obtained using backward-
pass approximation allow for much more stable adjustment
of the shortest-path attribute, especially at higher learning
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rates. In many cases, the forward-pass approximation ob-
tained from the GNN shifts the shortest-path value in the
opposite direction from the one intended, despite its tight
approximation of the DP-function and exact gradient com-
putation.

Optimal Histogram Differentiation
We consider the following toy problem. Let x ∈ Rn and

y ∈ Rn be an input and k-histogram signal, respectively.
Since solving minx ‖x − y‖22 based on descent method is
a trivial, we consider the optimization problem with a noisy
target ŷ = y + ε where ε ∼ N(0, σ2). Given a prior that
the target signal y is k-histogram, we solve a following op-
timization problem:

min
x
‖h(x)− ŷ‖22 (10)

and measure the distance between histogram approximation
of updated input h(x) and clean target signal y.

We compare hwith following options: Soft-DP, DSA, and
surrogate models based on neural networks. We prepare pre-
trained multi-layer perceptron (MLP) and convolution neu-
ral networks (CNN) to solve k-histogram approximations
as a surrogate model using 100K randomly partitioned k-
histogram with k=3. We freeze the surrogate models’ pa-
rameters when solving the optimization problem in Equa-
tion 6. We define the input x to be noisy k-histogram signals
which in range of [0, 100] and y to be clean k-histogram gen-
erated independent to x (equivalently, partitions and values
independent). Given the choice of h, we update the input x
2, 000 iterations with learning rate 10 via SGD method. We
choose the σ = 5 for ŷ to be the same value to train the
surrogate models. Our soft-dp approximation provides the
most consistent approximation to the clean target as shown
in Figure 2.

We also compare the Jacobian ∂h/∂x between Soft-DP,
DSA, MLP, and CNN given histogram inputs x as shown
in Figure 3. DSA jacobian is the exact Jacobian given the
histogram approximation. Soft-DP adds the probabilistic as-
pect to Jacobian that neighboring block matrix smooths out
if the truth signal partitions are close in terms of the value.
On the other hand, we observe MLP and CNN having some
noise to the Jacobian.

Microstructure Design
In materials science, it is common to represent materials

by their 2-dimensional microstructures which display the ar-
rangement of their components. These microstructures de-
termine the properties of the materials to which they cor-
respond. Designing microstructures which satisfy key con-
straints therefore allows for the controllable synthesis of
novel materials.

Previous work from (Joshi et al. 2020) has introduced the
InvNet model, which augments the loss function and train-
ing procedure of a standard Wasserstein-GAN (Arjovsky,
Chintala, and Bottou 2017) to train a controllable generator.
In addition to the standard noise vector input z, the InvNet
generator also accepts a control vector c which represents
the desired value of some attribute of the data sample that
can be computed by some function f . The standard WGAN
loss function (11), can then be replaced with L (12)

L(θ, ψ) = Ex∼pdata [Dψ(x)]− Ex∼pz,c∼pc [Gθ(Dψ(z, c))]
(11)

L(θ, ψ) = L(θ, ψ) + Ex∼pz,c∼pc
[
λI(c− f(Gθ(z)))

2
]

(12)
InvNet also uses a unique three-way optimization method

to find the Nash equilibrium of the min-max optimization
problem minθ maxψ L Note that for this mini-max opti-
mization to be tractable, the attribute function f must be
differentiable. The applications of this model in prior work
include the microstructure synthesis problem mentioned
above, in which the attribute functions f were chosen to be
the volume fraction and two-point correlation which both
have easily defined gradients.

One important attribute to control in the design of materi-
als used in photovoltaic applications is conductivity, which
corresponds to the shortest path from the top of the array
to the bottom along a single material. Motivated by this, we
trained an InvNet model on a dataset of 2-phase microstruc-
tures and selected an invariance function f defined as the
shortest-path from the top to the bottom of the image under
some pairwise distance function d, which measures the dif-
ference between adjacent pixel values. Note that in the fol-
lowing definition, we ensure that p1 is in the first row of the
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array, p2 is in the last row, and that ∀i : pi, pi+1 are adjacent
to one another

SP (I) = min
p1,p2...,ph

h−1∑
i=1

d(Ipi , Ipi+1
)

To ensure that identical pixels would have a distance
of 1 and that the distance increases rapidly as the values
diverged, we chose our distance function as d(x1, x2) =
exp((x1, x2)2).

To use SP as our attribute function, we first formulate it
as a straightforward DP problem, with its cost representing
the length of the shortest path. We then added entropy regu-
larization to approximate SP with a differentiable function
SPΩ. Due to the high number of DP updates needed to com-
pute SPΩ (Each microstructure was of size 64 × 64, mak-
ing for a total of 212 DP updates), we found it necessary to
use our proposed debiased soft-DP approach to ensure ac-
curate gradients. This setting gives us an opportunity to test
whether the soft-DP gradients can be used to train deep neu-
ral networks in addition to the simple input updates we’ve
seen previously.

Our experiments show that the shortest-path relaxation
is effective in reducing the invariance cost (c − SP (x))2,
meaning that the generator is able to learn to output samples
with specified shortest-path values. Increasing the penalty
coefficient for the DP-based loss further ensures that the
generator obeys the control input.
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